skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carrillo, Carlos M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigated the predictability (forecast skill) of short-term droughts using the Palmer drought severity index (PDSI). We incorporated a sophisticated data training (of decadal range) to evaluate the improvement of forecast skill of short-term droughts (3 months). We investigated whether the data training of the synthetic North American Multi-Model Ensemble (NMME) climate has some influence on enhancing short-term drought predictability. The central elements are the merged information among PDSI and NMME with two postprocessing techniques. 1) The bias correction–spatial disaggregation (BC-SD) method improves spatial resolution by using a refined soil information introduced in the available water capacity of the PDSI calculation to assess water deficit that better estimates drought variability. 2) The ensemble model output statistic (EMOS) approach includes systematically trained decadal information of the multimodel ensemble simulations. Skill of drought forecasting improves when using EMOS, but BC-SD does not increase the forecast skill when compared with an analysis using BC (low spatial resolution). This study suggests that predictability forecast of drought (PDSI) can be extended without any change in the core dynamics of the model but instead by using the sophisticated EMOS postprocessing technique. We pointed out that using NMME without any postprocessing is of limited use in the suite of model variations of the NMME, at least for the U.S. Northeast. From our analysis, 1 month is the most extended range we should expect, which is below the range of the seasonal scale presented with EMOS (2 months). Thus, we propose a new design of drought forecasts that explicitly includes the multimodel ensemble signal. 
    more » « less
  2. Abstract Evapotranspiration (ET) is a significant ecosystem flux, governing the partitioning of energy at the land surface. Understanding the seasonal pattern and magnitude ofETis critical for anticipating a range of ecosystem impacts, including drought, heat‐wave events, and plant mortality. In this study, we identified the relative controls of seasonal variability inET, and how these controls vary among ecosystems. We used overlapping AmeriFlux and PhenoCam time series at a daily timestep from 20 sites to explore these linkages (# site‐years >100), and our study area covered a broad climatological aridity gradient in the U.S. and Canada. We focused on disentangling the most important controls of bulk surface conductance (Gs) and evaporative fraction (EF = LE/[H + LE]), whereLEandHrepresent latent and sensible heat fluxes, respectively. Specifically, we investigated how vegetation phenology varied in importance relative to meteorological variables (vapor pressure deficit and antecedent precipitation) as a driver ofGsandEFusing path analysis, a framework for quantifying and comparing the causal linkages among multiple response and explanatory variables. Our results revealed that the drivers ofGsandEFseasonality varied significantly between energy‐ and water‐limited ecosystems. Specifically, precipitation had a much higher effect in water‐limited ecosystems, while seasonal patterns in canopy greenness emerged as a stronger control in energy‐limited ecosystems. Given that phenology is expected to shift under future climate, our findings provide key information for understanding and predicting how phenology may impact 21st‐century hydroclimate regimes and the surface‐energy balance. 
    more » « less
  3. Abstract Large-scale changes in the state of the land surface affect the circulation of the atmosphere and the structure and function of ecosystems alike. As global temperatures increase and regional climates change, the timing of key plant phenophase changes are likely to shift as well. Here we evaluate a suite of phenometrics designed to facilitate an “apples to apples” comparison between remote sensing products and climate model output. Specifically, we derive day-of-year (DOY) thresholds of leaf area index (LAI) from both remote sensing and the Community Land Model (CLM) over the Northern Hemisphere. This systematic approach to comparing phenologically relevant variables reveals appreciable differences in both LAI seasonal cycle and spring onset timing between model simulated phenology and satellite records. For example, phenological spring onset in the model occurs on average 30 days later than observed, especially for evergreen plant functional types. The disagreement in phenology can result in a mean bias of approximately 5% of the total estimated Northern Hemisphere NPP. Further, while the more recent version of CLM (v5.0) exhibits seasonal mean LAI values that are in closer agreement with satellite data than its predecessor (CLM4.5), LAI seasonal cycles in CLM5.0 exhibit poorer agreement. Therefore, despite broad improvements for a range of states and fluxes from CLM4.5 to CLM5.0, degradation of plant phenology occurs in CLM5.0. Therefore, any coupling between the land surface and the atmosphere that depends on vegetation state might not be fully captured by the existing generation of the model. We also discuss several avenues for improving the fidelity between observations and model simulations. 
    more » « less