- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Adachi, Masayoshi (1)
-
Bowman, Cheryl L. (1)
-
Carter, Jennifer L. (1)
-
Carter, Jennifer L. W. (1)
-
Ellis, David L. (1)
-
Fada, Justin S. (1)
-
French, Roger H. (1)
-
Fukuyama, Hiroyuki (1)
-
Hamaya, Sonoko (1)
-
Loach, Andrew J. (1)
-
Senanayake, Nishan M. (1)
-
Stuckner, Joshua (1)
-
Wilson, Laura G. (1)
-
Yamagata, Yuji (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A Data-Driven Framework to Select a Cost-Efficient Subset of Parameters to Qualify Sourced MaterialsThe quality of powder processed for manufacturing can be certified by hundreds of different variables. Assessing the impact of all these different metrics on the performance of additively manufactured engineered products is an invaluable, but time intensive specification process. In this work, a comprehensive, generalizable, data-driven framework was implemented to select the optimal powder processing and microstructure variables that are required to predict the target property variables. The framework was demonstrated on a high-dimensional dataset collected from selective laser melted, additively manufactured, Inconel 718. One hundred and twenty-nine powder quality variables including particle morphology, rheology, chemical composition, and build composition, were assessed for their impact on eight microstructural features and sixteen mechanical properties. The importance of each powder and microstructure variable was determined by using statistical analysis and machine learning models. The trained models predicted target mechanical properties with an R2 value of 0.9 or higher. The results indicate that the desired mechanical properties can be achieved by controlling only a few critical powder properties and without the need for collecting microstructure data. This framework significantly reduces the time and cost of qualifying source materials for production by determining an optimal subset of experiments needed to predict that a given source material will lead to a desired outcome. This general framework can be easily applied to other material systems.more » « less
-
Adachi, Masayoshi ; Hamaya, Sonoko ; Yamagata, Yuji ; Loach, Andrew J. ; Fada, Justin S. ; Wilson, Laura G. ; French, Roger H. ; Carter, Jennifer L. W. ; Fukuyama, Hiroyuki ( , Journal of the American Ceramic Society)
Abstract Aluminum nitride is a promising substrate material for AlGaN‐based UV‐LED. In order to develop a robust growth processing route for AlN single crystals, fundamental studies of solution growth experiments using Ni‐Al alloy melts as a new solution system were performed. Al can be stably kept in solution the Ni‐Al liquid even at high temperature; in addition, the driving force of the AlN formation reaction from solution can be controlled by solution composition and temperature. To investigate AlN crystal growth behavior we developed an in situ observation system using an electromagnetic levitation technique. AlN formation behavior, including nucleation and growth, was quantitatively analyzed by an image processing pipeline. The nucleation rate of AlN decreased with increasing growth temperature and decreasing aluminum composition. In addition, hexagonal c‐axis oriented AlN crystal successfully grew on the levitated Ni‐40 mol%Al droplet reacted at low driving force (1960 K), on the other hand, AlN crystal with dendritic morphology appeared on the sample with higher driving force (Ni‐50 mol%Al, 1960 K). Thus, the nucleation rate and crystal morphology were dominated by the driving force of the AlN formation reaction.