Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2024
-
Free, publicly-accessible full text available November 1, 2024
-
Abstract A description is presented of the algorithms used to reconstruct energy deposited in the CMS hadron calorimeter during Run 2 (2015–2018) of the LHC. During Run 2, the characteristic bunch-crossing spacing for proton-proton collisions was 25 ns, which resulted in overlapping signals from adjacent crossings. The energy corresponding to a particular bunch crossing of interest is estimated using the known pulse shapes of energy depositions in the calorimeter, which are measured as functions of both energy and time. A variety of algorithms were developed to mitigate the effects of adjacent bunch crossings on local energy reconstruction in the hadron calorimeter in Run 2, and their performance is compared.
Free, publicly-accessible full text available November 1, 2024 -
Free, publicly-accessible full text available November 1, 2024
-
Free, publicly-accessible full text available November 1, 2024
-
Free, publicly-accessible full text available October 1, 2024
-
A bstract The second-order (
v 2) and third-order (v 3) Fourier coefficients describing the azimuthal anisotropy of prompt and nonprompt (from b-hadron decays) J/ ψ, as well as prompt ψ(2S) mesons are measured in lead-lead collisions at a center-of-mass energy per nucleon pair of = 5$$ \sqrt{s_{\textrm{NN}}} $$ . 02 TeV. The analysis uses a data set corresponding to an integrated luminosity of 1.61 nb− 1recorded with the CMS detector. The J/ ψ and ψ(2S) mesons are reconstructed using their dimuon decay channel. Thev 2andv 3coefficients are extracted using the scalar product method and studied as functions of meson transverse momentum and collision centrality. The measuredv 2values for prompt J/ ψ mesons are found to be larger than those for nonprompt J/ ψ mesons. The prompt J/ ψv 2values at highp Tare found to be underpredicted by a model incorporating only parton energy loss effects in a quark-gluon plasma medium. Prompt and nonprompt J/ ψ mesonv 3and prompt ψ(2S)v 2andv 3values are also reported for the first time, providing new information about heavy quark interactions in the hot and dense medium created in heavy ion collisions.Free, publicly-accessible full text available October 1, 2024 -
Abstract A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at
by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138$${\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}}$$ . The 95% confidence level upper limit set on the branching fraction of the 125$$\,\text {fb}^{-1}$$ Higgs boson to invisible particles,$$\,\text {Ge}\hspace{-.08em}\text {V}$$ , is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ searches carried out at$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ , 8, and 13$${\sqrt{s}=7}$$ in complementary production modes. The combined upper limit at 95% confidence level on$$\,\text {Te}\hspace{-.08em}\text {V}$$ is 0.15 (0.08 expected).$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ Free, publicly-accessible full text available October 1, 2024