skip to main content


Search for: All records

Creators/Authors contains: "Cassel, Elizabeth J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sedimentary basins record crustal-scale tectonic processes related to the construction and demise of orogenic belts, making them an invaluable archive for the reconstruction of the evolution of the North American Cordillera. In southwest Montana, USA, the Renova Formation, considered to locally represent the earliest accumulation following Mesozoic−Cenozoic compressional deformation, is widespread but remains poorly dated, and its origin is debated. Herein, we employed detrital zircon U-Pb and (U-Th)/He double dating and sanidine 40Ar/39Ar geochronology in the context of decimeter-scale measured stratigraphic sections in the Renova Formation of the Muddy Creek Basin to determine basin evolution and sediment provenance and place the basin-scale record within a regional context to illuminate the lithospheric processes driving extension and subsidence. The Muddy Creek Basin is an extensional half graben in southwest Montana that is ∼22 km long and ∼7 km wide, with a >800-m-thick sedimentary package. Basin deposition began ca. 49 Ma, as marked by multiple ignimbrites sourced from the Challis volcanic field, which are overlain by a tuffaceous fluvial section. Fluvial strata are capped by a 46.8 Ma Challis ignimbrite constrained by sanidine 40Ar/39Ar dating. An overlying fossiliferous limestone records the first instance of basinal ponding, which was coeval with the cessation of delivery of Challis volcanics−derived sediment into the Green River Basin. We attribute initial ponding to regional drainage reorganization and damning of the paleo−Idaho River due to uplift and doming of the southern Absaroka volcanic province, resulting in its diversion away from the Green River Basin and backfilling of the Lemhi Pass paleovalley. Detrital zircon maximum depositional ages and sanidine 40Ar/39Ar ages show alternating fluvial sandstone and lacustrine mudstone deposition from 46 Ma to 40 Ma in the Muddy Creek Basin. Sediment provenance was dominated by regionally sourced, Challis volcanics−aged and Idaho Batholith−aged grains, while detrital zircon (U-Th)/He (ZHe) data are dominated by Eocene cooling ages. Basin deposition became fully lacustrine by ca. 40 Ma, based on an increasing frequency of organic-rich mudstone with rare interbedded sandstone. Coarse-grained lithofacies became prominent again starting ca. 37 Ma, coeval with a major shift in sediment provenance due to extension and local footwall unroofing. Detrital zircon U-Pb and corresponding ZHe ages from the upper part of the section are predominantly Paleozoic in age, sourced from the Paleozoic sedimentary strata exposed in the eastern footwall of the Muddy Creek detachment fault. Paleocurrents shift from south- to west-directed trends, supporting the shift to local sources, consistent with initiation of the Muddy Creek detachment fault. Detrital zircon maximum depositional ages from the youngest strata in the basin suggest deposition continuing until at least 36 Ma. These data show that extension in the Muddy Creek Basin, which we attribute to continued lithospheric thermal weakening, initiated ∼10 m.y. later than in the Anaconda and Bitterroot metamorphic core complexes. This points to potentially different drivers of extension in western Montana and fits previously proposed models of a regional southward sweep of extension related to Farallon slab removal.

     
    more » « less
    Free, publicly-accessible full text available February 13, 2025
  2. Abstract

    Quantitative isotopic paleoaltimetry has been applied in regions where Rayleigh distillation controls isotopic lapse rates. Air mass mixing and moisture recycling are viewed as complicating factors. We show here that, because of such effects, a cross‐Andean transect of meteoric water δD values precisely marks the geographic position of the Western Cordillera crest. This modern water signal is also recorded in Pliocene‐Pleistocene hydrated volcanic glass δD values. δD values between the Pacific coast and Western Cordillera exhibit no trend up to 2.5 km elevation and 100 km inboard, consistent with an arid climate in which Amazonian moisture is topographically blocked and Pacific moisture is efficiently recycled. The result is a large δD lapse rate (−98‰/km) and an abrupt horizontal δD shift (2‰/km) at the Western Cordillera crest. Therefore, we conclude that cross‐orogen δD transects could locate the ancient Western Cordillera crest.

     
    more » « less
  3. Abstract

    Eocene strata of the Elko Formation record lacustrine deposition within the Nevada hinterland of the North American Cordillera. We present a detailed geochemical stratigraphy enabled by high‐sampling‐resolution geochronology from lacus trine limestone and interbedded volcanic rocks of the Elko Formation. Two intervals of lacustrine deposition, an early Eocene “Lake Adobe” of limited aerial extent and a laterally extensive middle Eocene “Lake Elko,” are separated by ∼5 m.y. of apparent unconformity. Sediments deposited in the apparently short‐lived (49.5–48.5 Ma) early Eocene Lake Adobe exhibit high‐amplitude covariation of δ18O, δ13C and87Sr/86Sr, which suggests a dynamically changing catchment and precipitation regime. Lake Elko formed during the middle Eocene, and its strata record three geochemically distinct phases, indicating it was a single interconnected water body that became increasingly evaporative over time. The lower Elko Formation (44.0–42.5 Ma) was deposited in a freshwater lake. Middle Elko Formation (42.5–41.2 Ma) lithofacies and geochemistry suggest that an increasingly saline and alkaline Lake Elko experienced salinity stratification‐induced hypolimnion disoxia and burial of12C‐rich organic matter. The upper Elko Formation (41.2–40.5 Ma) records a shallow final phase of Lake Elko that experienced short residence times and a breakdown in stratification. A sharp decline of87Sr/86Sr in the upper Elko Formation reflects an increasing aerial extent of low‐87Sr/86Sr volcanic deposits from nearby calderas. Middle Eocene strata record ponding of paleodrainage, increasing hydrologic isolation and volcanism, consistent with progressive north to south removal of the Farallon flat slab and/or delamination of the lower lithospheric mantle of the North American plate.

     
    more » « less
  4. Abstract

    The isotopic composition of precipitation is used to trace water cycling and climate change, but interpretations of the environmental information recorded in central Andean precipitation isotope ratios are hindered by a lack of multi‐year records, poor spatial distribution of observations, and a predominant focus on Rayleigh distillation. To better understand isotopic variability in central Andean precipitation, we present a three‐year record of semimonthly δ18Opand δ2Hpvalues from 15 stations in southern Peru and triple oxygen isotope data, expressed as ∆′17Op, from 32 precipitation samples. Consistent with previous work, we find that elevation correlates negatively with δ18Opand that seasonal δ18Opvariations are related to upstream rainout and local convection. Spatial δ18Opvariations and atmospheric back trajectories show that both eastern‐ and western‐derived air masses bring precipitation to southern Peru. Seasonal d‐excesspcycles record moisture recycling and relative humidity at remote moisture sources, and both d‐excesspand ∆′17Opclearly differentiate evaporated and non‐evaporated samples. These results begin to establish the natural range of unevaporated ∆′17Opvalues in the central Andes and set the foundation for future paleoclimate and paleoaltimetry studies in the region. This study highlights the hydrologic understanding that comes from a combination of δ18Op, d‐excessp, and ∆′17Opdata and helps identify the evaporation, recycling, and rainout processes that drive water cycling in the central Andes.

     
    more » « less