skip to main content


Search for: All records

Creators/Authors contains: "Castro, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Oxynitride perovskites of the type ABO 2 N have attracted considerable attention thanks to their potential ferroelectric behavior and tunable bandgap energy, making them ideal candidates for photocatalysis processes. Therefore, in order to shed light on the origin of their ferroelectric response, here we report a complete analysis of the structural and vibrational properties of SrNbO 2 N and SrTaO 2 N oxynitrides. By employing first-principles calculations, we analyzed the symmetry in-equivalent structures considering the experimentally reported parent I 4/ mcm space group (with a phase a 0 a 0 c − in Glazer's notation). Based on the I 4/ mcm reference within the 20-atoms unit-cell, we found and studied the ensemble of structures where different octahedral anionic orderings are allowed by symmetry. Thus, by exploring the vibrational landscape of the cis - and trans -type configuration structures and supported by the ionic eigendisplacements and the Born effective charges, we explained the mechanism responsible for the appearance of stable ferroelectric phases in both anionic orderings. The latter goes from covalent-driven in the trans -type ordering to the geometrically-driven in the cis -type configuration. Finally, we found in both cases that the biaxial xy epitaxial strain considerably enhances such ferroelectric response. 
    more » « less
  2. null (Ed.)
  3. Free, publicly-accessible full text available January 1, 2026
  4. Abstract

    Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. A<sc>bstract</sc>

    A measurement is performed of Higgs bosons produced with high transverse momentum (pT) via vector boson or gluon fusion in proton-proton collisions. The result is based on a data set with a center-of-mass energy of 13 TeV collected in 2016–2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb1. The decay of a high-pTHiggs boson to a boosted bottom quark-antiquark pair is selected using large-radius jets and employing jet substructure and heavy-flavor taggers based on machine learning techniques. Independent regions targeting the vector boson and gluon fusion mechanisms are defined based on the topology of two quark-initiated jets with large pseudorapidity separation. The signal strengths for both processes are extracted simultaneously by performing a maximum likelihood fit to data in the large-radius jet mass distribution. The observed signal strengths relative to the standard model expectation are$$ {4.9}_{-1.6}^{+1.9} $$4.91.6+1.9and$$ {1.6}_{-1.5}^{+1.7} $$1.61.5+1.7for the vector boson and gluon fusion mechanisms, respectively. A differential cross section measurement is also reported in the simplified template cross section framework.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  6. Abstract

    This paper describes theCombinesoftware package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to runCombineand reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details ofCombine. However, the online documentation referenced within this paper provides an up-to-date and complete user guide.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  7. Abstract

    A search is reported for charge-parity$$CP$$CPviolation in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$D0KS0KS0decays, using data collected in proton–proton collisions at$$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$s=13TeVrecorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6$$\,\text {fb}^{-1}$$fb-1, which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays$${{{\textrm{D}}}^{{*+}}} \rightarrow {{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} $$D+D0π+and$${{{\textrm{D}}}^{{*-}}} \rightarrow {\overline{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{-}}} $$D-D¯0π-. The$$CP$$CPasymmetry in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$D0KS0KS0is measured to be$$A_{CP} ({{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} ) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%$$ACP(KS0KS0)=(6.2±3.0±0.2±0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the$$CP$$CPasymmetry in the$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} {{{\mathrm{\uppi }}}^{{-}}} $$D0KS0π+π-decay. This is the first$$CP$$CPasymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025