Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT A trade-off between locomotor speed and endurance occurs in various taxa, and is thought to be underpinned by a muscle-level trade-off. Among four replicate high runner (HR) lines of mice, selectively bred for voluntary wheel-running behavior, a negative correlation between average running speed and time spent running has evolved. We hypothesize that this trade-off is due to changes in muscle physiology. We studied the HR lines at generation 90, at which time one line (L3) is fixed for the mini-muscle phenotype, another is polymorphic (L6) and the others (L7, L8) lack mini-muscle individuals. We used in situ preparations to quantify the contractile properties of the triceps surae muscle complex. Maximal shortening velocity varied significantly, being lowest in mini-muscle mice (L3 mini=25.2 mm s−1, L6 mini=25.5 mm s−1), highest in normal-muscle mice L6 and L8 (40.4 and 50.3 mm s−1, respectively) and intermediate in normal-muscle L7 mice (37.2 mm s−1). Endurance, measured both as the slope of the decline in force and the proportion of initial force that could be sustained, also varied significantly. The slope was shallowest in mini-muscle mice (L3 mini=−0.00348, L6 mini=−0.00238), steepest in lines L6 and L8 (−0.01676 and −0.01853), and intermediate in L7 (−0.01145). Normalized sustained force was highest in mini-muscle mice (L3 mini=0.98, L6 mini=0.92) and lowest in L8 (0.36). There were significant, negative correlations between velocity and endurance metrics, indicating a muscle-level trade-off. However, this muscle-level trade-off does not seem to underpin the organismal-level speed and endurance trade-off previously reported as the ordering of the lines is reversed: the lines that run the fastest for the least time have the lowest muscle complex velocity and highest endurance.more » « less
-
We compared the fecal microbial community composition and diversity of four replicate lines of mice selectively bred for high wheel-running activity over 81 generations (HR lines) and four non-selected control (C) lines. We performed 16S rRNA gene sequencing on fecal samples taken 24 hours after weaning, identifying a total of 2,074 bacterial Operational Taxonomic Units. HR and C mice did not significantly differ for measures of alpha diversity, but HR had a higher relative abundance of the family Clostridiaceae. These results differ from a study of rats, where a line bred for high forced-treadmill endurance and that also ran more on wheels had lower relative abundance of Clostridiaceae, as compared with a line bred for low endurance that ran less on wheels. Within the HR and C groups, replicate lines had unique microbiomes based on unweighted UniFrac beta diversity, indicating random genetic drift and/or multiple adaptive responses to selection.
-
We have used selective breeding with house mice to study coadaptation of morphology and physiology with the evolution of high daily levels of voluntary exercise. Here, we compared hindlimb bones and muscle masses from the 11th generation of four replicate High Runner (HR) lines of house mice bred for high levels of voluntary wheel running with four non‐selected control (C) lines. Mass, length, diameter, and depth of the femur, tibia‐fibula, and metatarsal bones, as well as masses of gastrocnemius and quadriceps muscles, were compared by analysis of covariance with body mass or body length as the covariate. Mice from HR lines had relatively wider distal femora and deeper proximal tibiae, suggesting larger knee surface areas, and larger femoral heads. Sex differences in bone dimensions were also evident, with males having thicker and shorter hindlimb bones when compared with females. Several interactions between sex, linetype, and/or body mass were observed, and analyses split by sex revealed several cases of sex‐specific responses to selection. A subset of the HR mice in two of the four HR lines expressed the mini‐muscle phenotype, characterized mainly by an ∼50% reduction in hindlimb muscle mass, caused by a Mendelian recessive mutation, and known to have been under positive selection in the HR lines. Mini‐muscle individuals had elongated distal elements, lighter and thinner hindlimb bones, altered 3rd trochanter muscle insertion positions, and thicker tibia‐fibula distal widths. Finally, several differences in levels of directional or fluctuating asymmetry in bone dimensions were observed between HR and C, mini‐ and normal‐muscled mice, and the sexes. This study demonstrates that skeletal dimensions and muscle masses can evolve rapidly in response to directional selection on locomotor behavior.more » « less
-
Abstract Selection experiments can elucidate the varying course of adaptive changes across generations. We examined the appendicular skeleton of house mice from four replicate High Runner (HR) lines bred for physical activity on wheels and four non‐selected Control (C) lines. HR mice reached apparent selection limits between generations 17 and 27, running ~3‐fold more than C. Studies at generations 11, 16, and 21 found that HR mice had evolved thicker hindlimb bones, heavier feet, and larger articular surface areas of the knee and hip joint. Based on biomechanical theory, any or all of these evolved differences may be beneficial for endurance running. Here, we studied mice from generation 68, plus a limited sample from generation 58, to test whether the skeleton continued to evolve after selection limits were reached. Contrary to our expectations, we found few differences between HR and C mice for these later generations, and some of the differences in bone dimensions identified in earlier generations were no longer statistically significant. We hypothesize that the loss of apparently coadapted lower‐level traits reflects (1) deterioration related to a gradual increase in inbreeding and/or (2) additional adaptive changes that replace the functional benefits of some skeletal changes.
-
Abstract Behavioral addictions can come in many forms, including overeating, gambling and overexercising. All addictions share a common mechanism involving activation of the natural reward circuit and reinforcement learning, but the extent to which motivation for natural and drug rewards share similar neurogenetic mechanisms remains unknown. A unique mouse genetic model in which four replicate lines of female mice were selectively bred (>76 generations) for high voluntary wheel running (High Runner or HR lines) alongside four non‐selected control (C) lines were used to test the hypothesis that high motivation for exercise is associated with greater reward for cocaine (20 mg/kg) and methylphenidate (10 mg/kg) using the conditioned place preference (CPP) test. HR mice run ~three times as many revolutions/day as C mice, but the extent to which they have increased motivation for other rewards is unknown. Both HR and C mice displayed significant CPP for cocaine and methylphenidate, but with no statistical difference between linetypes for either drug. Taken together, results suggest that selective breeding for increased voluntary running has modified the reward circuit in the brain in a way that increases motivation for running without affecting cocaine or methylphenidate reward.