- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Zhang, Qiuying (2)
-
Arsouze, Thomas (1)
-
Beadling, Rebecca (1)
-
Bell, Mike (1)
-
Bellucci, Alessio (1)
-
Biastoch, Arne (1)
-
Blockley, Ed (1)
-
Cameron Rencurrel, M. (1)
-
Castruccio, Fred (1)
-
Castruccio, Fred S. (1)
-
Chang, Ping (1)
-
Chassignet, Eric P. (1)
-
Danabasoglu, Gokhan (1)
-
Fox-Kemper, Baylor (1)
-
Gan, Bolan (1)
-
Gopal, Abishek (1)
-
Hewitt, Helene T. (1)
-
Hyder, Pat (1)
-
Kuhlbrodt, Till (1)
-
Marshall, David P. (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The impact of increased model horizontal resolution on climate prediction performance is examined by comparing results from low-resolution (LR) and high-resolution (HR) decadal prediction simulations conducted with the Community Earth System Model (CESM). There is general improvement in global skill and signal-to-noise characteristics, with particularly noteworthy improvements in the eastern tropical Pacific, when resolution is increased from order 1° in all components to order 0.1°/0.25° in the ocean/atmosphere. A key advance in the ocean eddy-resolving HR system is the reduction of unrealistic warming in the Southern Ocean (SO) which we hypothesize has global ramifications through its impacts on tropical Pacific multidecadal variability. The results suggest that accurate representation of SO processes is critical for improving decadal climate predictions globally and for addressing longstanding issues with coupled climate model simulations of recent Earth system change.more » « less
-
Hewitt, Helene T.; Roberts, Malcolm; Mathiot, Pierre; Biastoch, Arne; Blockley, Ed; Chassignet, Eric P.; Fox-Kemper, Baylor; Hyder, Pat; Marshall, David P.; Popova, Ekaterina; et al (, Current Climate Change Reports)null (Ed.)Abstract Purpose of Review Assessment of the impact of ocean resolution in Earth System models on the mean state, variability, and future projections and discussion of prospects for improved parameterisations to represent the ocean mesoscale. Recent Findings The majority of centres participating in CMIP6 employ ocean components with resolutions of about 1 degree in their full Earth System models (eddy-parameterising models). In contrast, there are also models submitted to CMIP6 (both DECK and HighResMIP) that employ ocean components of approximately 1/4 degree and 1/10 degree (eddy-present and eddy-rich models). Evidence to date suggests that whether the ocean mesoscale is explicitly represented or parameterised affects not only the mean state of the ocean but also the climate variability and the future climate response, particularly in terms of the Atlantic meridional overturning circulation (AMOC) and the Southern Ocean. Recent developments in scale-aware parameterisations of the mesoscale are being developed and will be included in future Earth System models. Summary Although the choice of ocean resolution in Earth System models will always be limited by computational considerations, for the foreseeable future, this choice is likely to affect projections of climate variability and change as well as other aspects of the Earth System. Future Earth System models will be able to choose increased ocean resolution and/or improved parameterisation of processes to capture physical processes with greater fidelity.more » « less
An official website of the United States government
