skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cater, Evan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modeling student knowledge is important for assessment design, adaptive testing, curriculum design, and pedagogical intervention. The assessment design community has primarily focused on continuous latent-skill models with strong conditional independence assumptions among knowledge items, while the prerequisite discovery community has developed many models that aim to exploit the interdependence of discrete knowledge items. This paper attempts to bridge the gap by asking, "When does modeling assessment item interdependence improve predictive accuracy?" A novel adaptive testing evaluation framework is introduced that is amenable to techniques from both communities, and an efficient algorithm, Directed Item-Dependence And Confidence Thresholds (DIDACT), is introduced and compared with an Item-Response-Theory based model on several real and synthetic datasets. Experiments suggest that assessments with closely related questions benefit significantly from modeling item interdependence. 
    more » « less