Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A unique approach was used to synthesize the high entropy alloy MoNbTaVW via reduction of metal-oxide precursors in a microwave plasma. The metal-oxides underwent ball milling and consolidation before plasma annealing at 1800 °C for 1 h with hydrogen as feedgas. X-ray diffraction, scanning electron microscopy/energy dispersive x-ray analysis, and Vickers hardness testing reveal characteristics of the high-entropy alloy. This includes a predominantly single-phase body-centered cubic structure, homogeneous distribution of all five metals, and 6.8 ± 0.9 GPa hardness, comparable with other reports for the same five-metal high entropy alloy configuration. Localized microwave plasma particle sintering is evident from the microstructure. These results highlight the promising potential of microwave plasma as a fast, economical, and flexible processing tool for high entropy alloys.more » « less
-
A microwave plasma chemical vapor deposition system was used to synthesize cubic boron nitride (cBN) coatings on diamond seeded silicon substrates using direct current (DC) bias. Effects of the argon (Ar) flow rate and bias voltage on the growth of the cBN coatings were investigated. Hydrogen (H2), argon (Ar), a mixture of diborane in H2 (95% H2, 5% B2H6), and N2 were used in the feed gas. A DC bias system was used for external biasing of the sample, which facilitates the goal of achieving sp3 bonded cBN. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) revealed the existence of sp3-bonded BN in the produced samples. With increasing Ar flow, the cBN content in the coating increases and reaches a maximum at the maximum Ar flow of 400 SCCM used in this study. High-resolution XPS scans for B1s and N1s indicate that the deposited coating contains more than 70% cBN. This study demonstrates that energetic argon ions generated in a microwave-induced plasma significantly increase cBN content in the coating.more » « less
-
Microwave-induced plasma was used to anneal precursor powders containing five metal oxides with carbon and boron carbide as reducing agents, resulting in high entropy boride ceramics. Measurements of hardness, phase structure, and oxidation resistance were investigated. Plasma annealing for 45 min in the range of 1500–2000 °C led to the formation of predominantly single-phase (Hf, Zr, Ti, Ta, Mo)B2 or (Hf, Zr, Nb, Ta, Mo)B2 hexagonal structures characteristic of high entropy borides. Oxidation resistance for these borides was improved by as much as a factor of ten when compared to conventional commercial diborides. Vickers and nanoindentation hardness measurements show the indentation size effect and were found to be as much as 50% higher than that reported for the same high entropy boride configuration made by other methods, with average values reaching up to 38 GPa (for the highest Vickers load of 200 gf). Density functional theory calculations with a partial occupation method showed that (Hf, Zr, Ti, Ta, Mo)B2 has a higher hardness but a lower entropy forming ability compared to (Hf, Zr, Nb, Ta, Mo)B2, which agrees with the experiments. Overall, these results indicate the strong potential of using microwave-induced plasma as a novel approach for synthesizing high entropy borides.more » « less
-
Boron nitride (BN) is a member of Group III nitrides and continues to spark interest among the scientific community for its mechanical properties, chemical inertness, thermal conductivity, and electrical insulating properties. In this study, microwave plasma chemical vapor deposition is used to synthesize BN on silicon substrates. Feed gas mixtures of H2, NH3, and B2H6 are used for a range of systematically varied power, pressure, and flow rate conditions. Plasma optical emission from atomic boron is shown to increase nonlinearly by nearly a factor of five with decreasing chamber pressure in the range from 100 to 10 Torr. Copious amounts of atomic boron in the plasma may be beneficial under some growth conditions for producing high hardness boron-rich nitrides, such as B13N2, B50N2, or B6N, which, to date, have only been synthesized under high pressure/high temperature conditions. Despite the higher atomic boron emission in the plasma at low pressure, BN coatings grown at 15 Torr result in hexagonal BN (B/N ratio of 1), regardless of the B2H6 flow rate used in the range of 0.6–3.0 sccm.more » « less
An official website of the United States government
