skip to main content

Search for: All records

Creators/Authors contains: "Cava, R. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Magnetic toroidicity is an uncommon type of magnetic structure in solid-state materials. Here, we experimentally demonstrate that collinear spins in a material withR-3 lattice symmetry can host a significant magnetic toroidicity, even parallel to the ordered spins. Taking advantage of a single crystal sample of CoTe6O13with anR-3 space group and a Co2+triangular sublattice, temperature-dependent magnetic, thermodynamic, and neutron diffraction results reveal A-type antiferromagnetic order below 19.5 K, with magnetic point group -3′ andk = (0,0,0). Our symmetry analysis suggests that the missing mirror symmetry in the lattice could lead to the local spin canting for a toroidal moment along thecaxis. Experimentally, we observe a large off-diagonal magnetoelectric coefficient of 41.2 ps/m that evidences the magnetic toroidicity. In addition, the paramagnetic state exhibits a large effective moment per Co2+, indicating that the magnetic moment in CoTe6O13has a significant orbital contribution. CoTe6O13embodies an excellent opportunity for the study of next-generation functional magnetoelectric materials.

    more » « less
  2. When an electron is incident on a superconductor from a metal, it is reflected as a hole in a process called Andreev reflection. If the metal N is sandwiched between two superconductors S in an SNS junction, multiple Andreev reflections (MARs) occur. We have found that, in SNS junctions with high transparency ( τ   →   1 ) based on the Dirac semimetal MoTe 2 , the MAR features are observed with exceptional resolution. By tuning the phase difference φ between the bracketing Al superconductors, we establish that the MARs coexist with a Josephson supercurrent I s = I A   sin φ . As we vary the junction voltage V , the supercurrent amplitude I A varies in step with the MAR order n , revealing a direct relation between them. Two successive Andreev reflections serve to shuttle a Cooper pair across the junction. If the pair is shuttled coherently, it contributes to I s . The experiment measures the fraction of pairs shuttled coherently vs. V . Surprisingly, superconductivity in MoTe 2 does not affect the MAR features. 
    more » « less
  3. Abstract In two-dimensional (2D) NbSe 2 crystal, which lacks inversion symmetry, strong spin-orbit coupling aligns the spins of Cooper pairs to the orbital valleys, forming Ising Cooper pairs (ICPs). The unusual spin texture of ICPs can be further modulated by introducing magnetic exchange. Here, we report unconventional supercurrent phase in van der Waals heterostructure Josephson junctions (JJs) that couples NbSe 2 ICPs across an atomically thin magnetic insulator (MI) Cr 2 Ge 2 Te 6 . By constructing a superconducting quantum interference device (SQUID), we measure the phase of the transferred Cooper pairs in the MI JJ. We demonstrate a doubly degenerate nontrivial JJ phase ( ϕ ), formed by momentum-conserving tunneling of ICPs across magnetic domains in the barrier. The doubly degenerate ground states in MI JJs provide a two-level quantum system that can be utilized as a new dissipationless component for superconducting quantum devices. Our work boosts the study of various superconducting states with spin-orbit coupling, opening up an avenue to designing new superconducting phase-controlled quantum electronic devices. 
    more » « less
  4. null (Ed.)
    Spin liquids are quantum phases of matter with a variety of unusual features arising from their topological character, including “fractionalization”—elementary excitations that behave as fractions of an electron. Although there is not yet universally accepted experimental evidence that establishes that any single material has a spin liquid ground state, in the past few years a number of materials have been shown to exhibit distinctive properties that are expected of a quantum spin liquid. Here, we review theoretical and experimental progress in this area. 
    more » « less
  5. null (Ed.)
  6. Edge supercurrents in superconductors have long been an elusive target. Interest in them has reappeared in the context of topological superconductivity. We report evidence for the existence of a robust edge supercurrent in the Weyl superconductor molybdenum ditelluride (MoTe2). In a magnetic fieldB, fluxoid quantization generates a periodic modulation of the edge condensate observable as a “fast-mode” oscillation of the critical currentIcversusB. The fast-mode frequency is distinct from the conventional Fraunhofer oscillation displayed by the bulk supercurrent. We confirm that the fast-mode frequency increases with crystal area as expected for an edge supercurrent. In addition, weak excitation branches are resolved that display an unusual broken symmetry.

    more » « less