The Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Gran Sasso (LNGS) is one of the largest underground physics laboratory, a very peculiar environment suited for experiments in Astroparticle Physics, Nuclear Physics and Fundamental Symmetries. The newly established Bellotti Ion Beam facility represents a major advance in the possibilities of studying nuclear processes in an underground environment. A workshop was organized at LNGS in the framework of the Nuclear Physics Mid Term Plan in Italy, an initiative of the Nuclear Physics Division of the Instituto Nazionale di Fisica Nucleare to discuss the opportunities that will be possible to study in the near future by employing state-of-the-art detection systems. In this report, a detailed discussion of the outcome of the workshop is presented.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available March 1, 2025 -
Abstract In this paper, we review scientific opportunities and challenges related to detection and reconstruction of low-energy (less than 100 MeV) signatures in liquid argon time-projection chamber (LArTPC) neutrino detectors. LArTPC neutrino detectors designed for performing precise long-baseline oscillation measurements with GeV-scale accelerator neutrino beams also have unique sensitivity to a range of physics and astrophysics signatures via detection of event features at and below the few tens of MeV range. In addition, low-energy signatures are an integral part of GeV-scale accelerator neutrino interaction final-states, and their reconstruction can enhance the oscillation physics sensitivities of LArTPC experiments. New physics signals from accelerator and natural sources also generate diverse signatures in the low-energy range, and reconstruction of these signatures can increase the breadth of Beyond the Standard Model scenarios accessible in LArTPC-based searches. A variety of experimental and theory-related challenges remain to realizing this full range of potential benefits. Neutrino interaction cross-sections and other nuclear physics processes in argon relevant to sub-hundred-MeV LArTPC signatures are poorly understood, and improved theory and experimental measurements are needed; pion decay-at-rest sources and charged particle and neutron test beams are ideal facilities for improving this understanding. There are specific calibration needs in the low-energy range, as well as specific needs for control and understanding of radiological and cosmogenic backgrounds. Low-energy signatures, whether steady-state or part of a supernova burst or larger GeV-scale event topology, have specific triggering, DAQ and reconstruction requirements that must be addressed outside the scope of conventional GeV-scale data collection and analysis pathways. Novel concepts for future LArTPC technology that enhance low-energy capabilities should also be explored to help address these challenges.more » « less
-
We present a first search for dark-trident scattering in a neutrino beam using a dataset corresponding toprotons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the neutrino target at the main injector produceandmesons, which could decay into dark-matter (DM) particles mediated via a dark photon. A convolutional neural network is trained to identify interactions of the DM particles in the liquid-argon time projection chamber (LArTPC) exploiting its imagelike reconstruction capability. In the absence of a DM signal, we provide limits at the 90% confidence level on the squared kinematic mixing parameteras a function of the dark-photon mass in the range. The limits cover previously unconstrained parameter space for the production of fermion or scalar DM particlesfor two benchmark models with mass ratiosand 2 and for dark fine-structure constants.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025 -
Free, publicly-accessible full text available April 1, 2025
-
Free, publicly-accessible full text available March 1, 2025
-
Free, publicly-accessible full text available January 22, 2025