skip to main content

Search for: All records

Creators/Authors contains: "Cen, Cheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Unidirectionally propagated electromagnetic waves are rare in nature but heavily sought after due to their potential applications in backscatter-free optical information processing setups. It was theoretically shown that the distinct bulk optical band topologies of a gyrotropic metal and an isotropic metal can enable topologically protected unidirectional surface plasmon polaritons (SPPs) at their interface. Here, we experimentally identify such interfacial modes at terahertz frequencies. Launching the interfacial SPPs via a tailored grating coupler, the far-field spectroscopy data obtained reveals strongly nonreciprocal SPP dispersions that are highly consistent with the theoretical predictions. The directionality of the interfacial SPPs studied here is flexibly tunable by either varying the external field or adjusting the metallic characteristics of the bulk materials. The experimental realization of actively tunable unidirectional SPPs sets the foundation for developing nanophotonic information processing devices based on topologically protected interfacial waves.

    more » « less
  3. It was demonstrated recently that the nano-optical and nanoelectronic properties of VO2can be spatially programmed through the local injection of oxygen vacancies by atomic force microscope writing. In this work, we study the dynamic evolution of the patterned domain structures as a function of the oxygen vacancy concentration and the time. A threshold doping level is identified that is critical for both the metal–insulator transition and the defect stabilization. The diffusion of oxygen vacancies in the monoclinic phase is also characterized, which is directly responsible for the short lifetimes of sub-100 nm domain structures. This information is imperative for the development of oxide nanoelectronics through defect manipulations.

    more » « less
  4. Abstract

    Multiferroics are a unique class of materials where magnetic and ferroelectric orders coexist. The research on multiferroics contributes significantly to the fundamental understanding of the strong correlations between different material degrees of freedom and provides an energy‐efficient route toward the electrical control of magnetism. While multiple ABO3oxide perovskites are identified as being multiferroic, their magnetoelectric coupling strength is often weak, necessitating the material search in different compounds. Here, the observation of room‐temperature multiferroic orders in multi‐anion SrNbO3−xNxthin films is reported. In these samples, the multi‐anion state enables the room‐temperature ferromagnetic ordering of the Nb d‐electrons. Simultaneously, ferroelectric responses that originate from the structural symmetry breaking associated are found with both the off‐center displacements of Nb and the geometric displacements of Sr, depending on the relative O‐N arrangements within the Nb‐centered octahedra. The findings not only diversify the available multiferroic material pool but also demonstrate a new multiferroism design strategy via multi‐anion engineering.

    more » « less
  5. Abstract

    Controlling material properties at the nanoscale is a critical enabler of high performance electronic and photonic devices. A prototypical material example is VO2, where a structural phase transition in correlation with dramatic changes in resistivity, optical response, and thermal properties demonstrates particular technological importance. While the phase transition in VO2can be controlled at macroscopic scales, reliable and reversible nanoscale control of the material phases has remained elusive. Here, reconfigurable nanoscale manipulations of VO2from the pristine monoclinic semiconducting phase to either a stable monoclinic metallic phase, a metastable rutile metallic phase, or a layered insulating phase using an atomic force microscope is demonstrated at room temperature. The capability to directly write and erase arbitrary 2D patterns of different material phases with distinct optical and electrical properties builds a solid foundation for future reprogrammable multifunctional device engineering.

    more » « less
  6. Abstract

    Defects‐controlled friction in graphene is of technological importance in many applications, but the underlying mechanism remains a subject of debate. Here it is shown that, during the controlled oxidation in oxygen plasma and subsequent reduction induced by high‐energy photons, the contact friction in chemical vapor deposition grown graphene is dominantly determined by the vacancies formed instead of the bonding with add‐atoms. This effect is attributed to the vacancy‐enhanced out‐of‐plane deformation flexibility in graphene, which tends to produce large puckering of graphene sheet near the contact edge and thus increases the effective contact area. Modified graphene with large contact friction has a large density of defects, but remains a good electrical conductor, in which the carrier transport is strongly affected by quantum localization effects even at room temperature. It is also found that the oxidation process in graphene is substrate‐sensitive. Comparing to monolayer graphene on SiO2substrate, the oxidation process progresses much faster when the substrate is SrTiO3, while bilayer graphene exhibits great oxidation resistance on both substrates. The collection of observations provides important information for tailoring the mechanical, electrical, and chemical properties of graphene through selected defects and substrates.

    more » « less