skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Cesanek, Evan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 3, 2024
  2. null (Ed.)
  3. Visually guided movements can show surprising accuracy even when the perceived three-dimensional (3D) shape of the target is distorted. One explanation of this paradox is that an evolutionarily specialized “vision-for-action” system provides accurate shape estimates by relying selectively on stereo information and ignoring less reliable sources of shape information like texture and shading. However, the key support for this hypothesis has come from studies that analyze average behavior across many visuomotor interactions where available sensory feedback reinforces stereo information. The present study, which carefully accounts for the effects of feedback, shows that visuomotor interactions with slanted surfaces are actually planned using the same cue-combination function as slant perception and that apparent dissociations can arise due to two distinct supervised learning processes: sensorimotor adaptation and cue reweighting. In two experiments, we show that when a distorted slant cue biases perception (e.g., surfaces appear flattened by a fixed amount), sensorimotor adaptation rapidly adjusts the planned grip orientation to compensate for this constant error. However, when the distorted slant cue is unreliable, leading to variable errors across a set of objects (i.e., some slants are overestimated, others underestimated), then relative cue weights are gradually adjusted to reduce the misleading effect of the unreliable cue, consistent with previous perceptual studies of cue reweighting. The speed and flexibility of these two forms of learning provide an alternative explanation of why perception and action are sometimes found to be dissociated in experiments where some 3D shape cues are consistent with sensory feedback while others are faulty. NEW & NOTEWORTHY When interacting with three-dimensional (3D) objects, sensory feedback is available that could improve future performance via supervised learning. Here we confirm that natural visuomotor interactions lead to sensorimotor adaptation and cue reweighting, two distinct learning processes uniquely suited to resolve errors caused by biased and noisy 3D shape cues. These findings explain why perception and action are often found to be dissociated in experiments where some cues are consistent with sensory feedback while others are faulty. 
    more » « less
  4. Because the motions of everyday objects obey Newtonian mechanics, perhaps these laws or approximations thereof are internalized by the brain to facilitate motion perception. Shepard’s seminal investigations of this hypothesis demonstrated that the visual system fills in missing information in a manner consistent with kinematic constraints. Here, we show that perception relies on internalized regularities not only when filling in missing information but also when available motion information is inconsistent with the expected outcome of a physical event. When healthy adult participants ( Ns = 11, 11, 12, respectively, in Experiments 1, 2, and 3) viewed 3D billiard-ball collisions demonstrating varying degrees of consistency with Newtonian mechanics, their perceptual judgments of postcollision trajectories were biased toward the Newtonian outcome. These results were consistent with a maximum-likelihood model of sensory integration in which perceived target motion following a collision is a reliability-weighted average of a sensory estimate and an internal prediction consistent with Newtonian mechanics.

     
    more » « less