skip to main content


Search for: All records

Creators/Authors contains: "Chaganti, V. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the channel temperature and the dissipated power. For a 26-nm-thick n-doped SrSnO3 channel with an area of 200 μm2, a thermal resistance of 260.1 ± 24.5 K mm/W was obtained. For a modest dissipated power of 0.5 W/mm, the channel temperature rose to ∼176 °C, a value which increases further at higher power levels. Electro-thermal simulations were performed which showed close agreement between the simulated and experimental I–V characteristics both in the absence and presence of self-heating. The work presented is critical for the development of perovskite-based high-power electronic devices.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)