An experimental study was performed to investigate damage sensing and fracture toughness of multifunctional conductive glass fiber composites under dynamic mode-I fracture loading. Carbon nanotubes (CNTs) were dispersed within the epoxy matrix using a shear mixing and sonicating process. An electrostatic wet flocking process was used to reinforce milled short PAN-based carbon fibers onto each of the layers of glass fiber fabric along the thickness direction in the composites. These layers of flocked fabric were stacked, and a vacuum infusion process was employed to fabricate the composites. The parametric study consisted of two carbon fiber lengths (80 μm and 150 μm) and two fiber densities (1000 fibers/mm2and 2000 fibers/mm2) and was performed to investigate the damage sensing capabilities of a three-dimensional conductive network generated through CNTs and carbon fibers. A double cantilever beam (DCB) configuration was considered, and a modified Hopkinson pressure bar setup along with a high-speed camera was used to investigate dynamic fracture toughness of the composites. The piezo-resistance response of the composites during dynamic fracture was measured using a modified system of four probes. For comparison, composites were also characterized for fracture toughness and piezo-resistance under quasi-static fracture loading conditions. The addition of short, milled PAN-based carbon fibers significantly increased the fracture toughness of glass/epoxy composites. The piezo-resistance response of the composites was easily correlated with instances of sudden crack growth during static fracture loading.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
A comprehensive experimental investigation is performed to understand the damage sensing capabilities of thermoplastic intra-ply carbon/glass laminated composites embedded with Carbon Nanotubes (CNTs) under quasi-static interlaminar shear and mode-I fracture loading conditions. CNTs are dispersed in thermoplastic Elium® resin using a combination of ultrasonication and shear mixing processes. This resin mix is used in a vacuum infusion process to fabricate four different intra-ply laminated composites orientations; G-0-C-90 [Carbon fibers are in the longitudinal direction], G-90-C-0 [Glass fibers are in the longitudinal direction], G-45-C-45(R) [carbon and glass fibers are at +45°, and −45° from the longitudinal direction and form a repeating layup], and G-45-C-45(A) [carbon and glass fibers are at +45°, and −45°, but with alternating directions for each lamina in the layup]. Four-circumferential probes are utilized to obtain the piezo-resistance measurements associated with damage inside the composites under shear and mode-I loadings. In the shear experimentation, the G-45-C-45(A) orientation demonstrated the largest interlaminar shear strength, at 50% greater than the G-45-C-45(R) orientation. Both G-45-C-45(A) and G-45-C-45(R) had significantly larger shear strains compared to the G-90-C-0 and G-0-C-90 orientations. However, the best resolution in shear damage sensing was seen with the G-0-C-90 composites. In the mode-I fracture experiments, the greatest fracture initiation toughness is shown with the G-0-C-90 orientation, which is 80% greater than the G-90-C-0 orientation. Compared to all orientations, the G-0-C-90 orientation also provided the most sensitive electrical response.
-
An experimental study is preformed to investigate the in-situ damage sensing capabilities of intra-ply hybrid carbon/glass laminate and epoxy composites under quasi-static interlaminar shear loading. A three-dimensional electrical sensory network is generated inside the composites through embedded carbon nanotubes (CNTs) in an epoxy matrix along with the carbon fibers in the intra-ply hybrid laminates. CNTs are dispersed in the epoxy matrix using a combination of ultrasonication and shear mixing techniques. Four circumferential ring probes are used to examine the electrical response under interlaminar shear load. The effect of four different intra-ply orientations (((0–90)C, where carbon fibers are oriented along the loading direction), ((0–90)G, where glass fibers are oriented along the loading direction), ((45/−45, where glass and carbon fibers are oriented at 45o/−45oand the laminates are repeated), and ((45/−45)A, where glass and carbon fibers are oriented at 45o/−45oand the laminates are alternated)) on the shear constitutive behavior and the damage detection are discussed. Intra-ply orientations of (45/−45) and (45/−45)Ashowed higher interlaminar shear strength and shear strain at break compared to (0/90)Cand (0/90)Gorientations. Out of all four orientations, (45/−45)Aprovided a better resolution of electrical response for damage sensing applications.
-
ABSTRACT Advanced glycation end‐products (AGEs) have been suggested to contribute to bone fragility in type 2 diabetes (T2D). AGEs can be induced through in vitro sugar incubations but there is limited data on the effect of total fluorescent AGEs on mechanical properties of human cortical bone, which may have altered characteristics in T2D. Thus, to examine the effect of AGEs on bone directly in T2D patients with uncontrolled sugar levels, it is essential to first understand the fundamental mechanisms by studying the effects of controlled in vitro‐induced AGEs on cortical bone mechanical behavior. Here, human cortical bone specimens from female cadaveric tibias (ages 57–87) were incubated in an in vitro 0.6 M ribose or vehicle solution (
n = 20/group) for 10 days at 37°C, their mechanical properties were assessed by microindentation and fracture toughness tests, and induced AGE levels were quantified through a fluorometric assay. Results indicated that ribose‐incubated bone had significantly more AGEs (+81%,p ≤ 0.005), lower elastic modulus assessed by traditional microindentation, and lower fracture toughness compared with vehicle controls. Furthermore, based on pooled data, increased AGEs were significantly correlated with deteriorated mechanical properties. The findings presented here show that the accumulation of AGEs allows for lower stiffness and increased ability to initiate a crack in human cortical bone. Statement of clinical significance: High sugar levels as in T2D results in deteriorated bone quality via AGE accumulation with a consequent weakening in bone's mechanical integrity. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:972‐983, 2020 -
Novel conductive jute/epoxy laminated composites were fabricated by embedding carbon nanotubes (CNTs) in the matrix and flocking short carbon fibers between the laminates. A three‐dimensional electrical conductive network was generated inside the composites and the electrical resistivity values were measured using a four circumferential probe measurement system. A parametric study was performed to investigate the effect of three different weight percentages of CNTs (0%, 0.025% and 0.1%), two different carbon fiber lengths (150µm and 350µm), four different carbon fiber flock densities (500, 1000, 1500 and 2000 fibers/mm2) and two different laminates' orientations ((0‐0‐0‐0)Tand (0‐90‐0‐90)T) on the resistivity values of the composites. Composites with the lowest resistivity value of 0.019 Ohms‐m was achieved for 0.1 wt.% of CNTs and 350µm with flock density of 2000 fibers/mm2for ((0‐0‐0‐0)Tlaminate orientation. The increase in flock length from 150µm to 350µm significantly decreased the resistivity by several orders because 350µm generated better conductive network with neighbouring carbon fibers as well as with CNTs. The flock density of carbon fibers has a dominant effect on 150µm long fibers compared to 350µm when the flock density increased from 1000 fibers/mm2to 1500 fibers/mm2. Variation of both CNTs weight percentage and laminate orientation did not have significant effect on change in resistivity. The electrical measurement investigation of these novel conductive natural fiber composites will have applications in in‐situ damage sensing and structural health monitoring. POLYM. COMPOS., 40:E1189–E1198, 2019. © 2018 Society of Plastics Engineers
-
Abstract Short oligomeric peptides typically do not exhibit the entanglements required for the formation of nanofibers via electrospinning. In this study, the synthesis of nanofibers composed of tyrosine‐based dipeptides via electrospinning, has been demonstrated. The morphology, mechanical stiffness, biocompatibility, and stability under physiological conditions of such biodegradable nanofibers were characterized. The electrospun peptide nanofibers have diameters less than 100 nm and high mechanical stiffness. Raman and infrared signatures of the peptide nanofibers indicate that the electrostatic forces and solvents used in the electrospinning process lead to secondary structures different from self‐assembled nanostructures composed of similar peptides. Crosslinking of the dipeptide nanofibers using 1,6‐diisohexanecyanate (HMDI) improved the physiological stability, and initial biocompatibility testing with human and rat neural cell lines indicate no cytotoxicity. Such electrospun peptides open up a realm of biomaterials design with specific biochemical compositions for potential biomedical applications such as tissue repair, drug delivery, and coatings for implants.