skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chamorro, Juan R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 18, 2025
  2. Free, publicly-accessible full text available September 8, 2024
  3. Abstract

    Samarium hexaboride is an anomaly, having many exotic and seemingly mutually incompatible properties. It was proposed to be a mixed‐valent semiconductor, and later a topological Kondo insulator, and yet has a Fermi surface despite being an insulator. We propose a new and unified understanding of SmB6centered on the hitherto unrecognized dynamical bonding effect: the coexistence of two Sm−B bonding modes within SmB6, corresponding to different oxidation states of the Sm. The mixed valency arises in SmB6from thermal population of these distinct minima enabled by motion of B. Our model simultaneously explains the thermal valence fluctuations, appearance of magnetic Fermi surface, excess entropy at low temperatures, pressure‐induced phase transitions, and related features in Raman spectra and their unexpected dependence on temperature and boron isotope.

     
    more » « less
  4. Abstract

    Samarium hexaboride is an anomaly, having many exotic and seemingly mutually incompatible properties. It was proposed to be a mixed‐valent semiconductor, and later a topological Kondo insulator, and yet has a Fermi surface despite being an insulator. We propose a new and unified understanding of SmB6centered on the hitherto unrecognized dynamical bonding effect: the coexistence of two Sm−B bonding modes within SmB6, corresponding to different oxidation states of the Sm. The mixed valency arises in SmB6from thermal population of these distinct minima enabled by motion of B. Our model simultaneously explains the thermal valence fluctuations, appearance of magnetic Fermi surface, excess entropy at low temperatures, pressure‐induced phase transitions, and related features in Raman spectra and their unexpected dependence on temperature and boron isotope.

     
    more » « less