skip to main content

Search for: All records

Creators/Authors contains: "Chamorro, Leonardo P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wheeler, Aaron (Ed.)
    The ability to measure the charge and size of single particles is essential to understanding particle adhesion and interaction with their environment. Characterizing the physical properties of biological particles, like cells, can be a powerful tool in studying the association between the changes in physical properties and disease development. Currently, measuring charge via the electrophoretic mobility (μep) of individual particles remains challenging, and there is only one prior report of simultaneously measuring μep and size. We introduce microfluidic transverse AC electrophoresis (TrACE), a novel technique that combines particle tracking velocimetry (PTV) and AC electrophoresis. In TrACE, electric waves with 0.75 to 1.5 V amplitude are applied transversely to the bulk flow and cause the particles to oscillate. PTV records the particles' oscillating trajectories as pressure drives bulk flow through the microchannel. A simple quasi-equilibrium model agrees well with experimental measurements of frequency, amplitude, and phase, indicating that particle motion is largely described by DC electrophoresis. The measured μep of polystyrene particles (0.53, 0.84, 1, and 2 μm diameter) are consistent with ELS measurements, and precision is enhanced by averaging ∼100 measurements per particle. Particle size is simultaneously measured from Brownian motion quantified from the trajectory for particles <2 μm or image analysis for particles ≥2 μm. Lastly, the ability to analyze intact mammalian cells is demonstrated with B cells. TrACE systems are expected to be highly suitable as fieldable tools to measure the μep and size of a broad range of individual particles. 
    more » « less
    Free, publicly-accessible full text available November 8, 2024
  2. We experimentally explored the effect of single-sidewall cooling on Rayleigh–Bénard (RB) convection. Canonical RB was also studied to aid insight. The scenarios shared tank dimensions and bottom and top wall temperatures; the single sidewall cooling had the top wall temperature. Turbulence was explored at two canonical Rayleigh numbers, $Ra=1.6\times 10^{10}$ and $Ra=2\times 10^9$ under Prandtl number $Pr=5.4$ . Particle image velocimetry described vertical planes parallel and perpendicular to the sidewall cooling. The two $Ra$ scenarios reveal pronounced changes in the flow structure and large-scale circulation (LSC) due to the sidewall cooling. The density gradient induced by the sidewall cooling led to asymmetric descending and ascending flows and irregular LSC. Flow statistics departed from the canonical case, exhibiting lower buoyancy effects, represented by an effective Rayleigh number with effective height dependent on the distance from the lateral cooling. Velocity spectra show two scalings, $\varPhi \propto f^{-5/3}$ Kolmogorov (KO41) and $\varPhi \propto f^{-11/5}$ Bolgiano (BO59) in the larger $Ra$ ; the latter was not present in the smaller set-up. The BO59 scaling with sidewall cooling appears at higher frequencies than its canonical counterpart, suggesting weaker buoyancy effects. The LSC core motions allowed us to identify a characteristic time scale of the order of vortex turnover time associated with distinct vortex modes. The velocity spectra of the vortex core oscillation along its principal axis showed a scaling of $\varPhi _c \propto f^{-5/3}$ for the single sidewall cooling, which was dominant closer there. It did not occur in the canonical case, evidencing the modulation of LSC oscillation on the flow. 
    more » « less
  3. Abstract

    Mammals have presumably evolved to adapt to a diverse range of ambient environmental conditions through the optimized heat and mass exchange. One of the crucial biological structures for survivability is the nose, which efficiently transports and thermally preconditions the external air before reaching the internal body. Nasal mucosa and cavity help warm and humidify the inhaled air quickly. Despite its crucial role, the morphological features of mammal noses and their effect in modulating the momentum of the inhaled air, heat transfer dynamics, and particulate trapping remain poorly understood. Tortuosity of the nasal cavity in high-olfactory mammalian species, such as pigs and opossum, facilitates the formation of complex airflow patterns inside the nasal cavity, which leads to the screening of particulates from the inhaled air. We explored basic nasal features in anatomically realistic nasal pathways, including tortuosity, radius of curvature, and gap thickness; they show strong power-law correlations with body weight. Complementary inspection of tortuosity with idealized conduits reveals that this quantity is central in particle capture efficiency. Mechanistic insights into such nuances can serve as a tipping point to transforming nature-based designs into practical applications. In-depth characterization of the fluid–particle interactions in nasal cavities is necessary to uncover nose mechanistic functionalities. It is instrumental in developing new devices and filters in a number of engineering processes.

    more » « less
  4. High-resolution large eddy simulations and complementary laboratory experiments using particle image velocimetry were performed to provide a detailed quantitative assessment of flow response to gaps in cylinder arrays. The base canopy consists of a dense array of emergent rigid cylinders placed in a regular staggered pattern. The gaps varied in length from [Formula: see text] to 24, in intervals of 4 d, where d is the diameter of the cylinders. The analysis was performed under subcritical conditions with Froude numbers [Formula: see text] and bulk Reynolds numbers [Formula: see text]. Results show that the gaps affect the flow statistics at the upstream and downstream proximity of the canopy. The affected zone was [Formula: see text] for the mean flow and [Formula: see text] for the second-order statistics. Dimensionless time-averaged streamwise velocity within the gap exhibited minor variability with gap spacing; however, in-plane turbulent kinetic energy, k, showed a consistent decay rate when normalized with that at [Formula: see text] from the beginning of the gap. The emergent canopy acts as a passive turbulence generator for the gap flow for practical purposes. The streamwise dependence of k follows an exponential trend within [Formula: see text] and transitions to a power-law at [Formula: see text]. The substantially lower maximum values of k within the gap compared to k within the canopy evidence a limitation of gap measurements representative of canopy flow statistics. We present a base framework for estimating representative in-canopy statistics from measurements in the gap. 
    more » « less
  5. Passive filtering is a common strategy to reduce airborne disease transmission and particulate contaminants across scales spanning orders of magnitude. The engineering of high-performance filters with relatively low flow resistance but high virus- or particle-blocking efficiency is a non-trivial problem of paramount relevance, as evidenced in the variety of industrial filtration systems and face masks. Next-generation industrial filters and masks should retain sufficiently small droplets and aerosols while having low resistance. We introduce a novel 3D-printable particle filter inspired by animals’ complex nasal anatomy. Unlike standard random-media-based filters, the proposed concept relies on equally spaced channels with tortuous airflow paths. These two strategies induce distinct effects: a reduced resistance and a high likelihood of particle trapping by altering their trajectories with tortuous paths and induced local flow instability. The structures are tested for pressure drop and particle filtering efficiency over different airflow rates. We have also cross-validated the observed efficiency through numerical simulations. We found that the designed filters exhibit a lower pressure drop, compared to commercial masks and filters, while capturing particles bigger than approximately 10 μm. Our findings could facilitate a novel and scalable filter concept inspired by animal noses. 
    more » « less
  6. The dynamics of air bubbles in turbulent Rayleigh–Bénard (RB) convection is described for the first time using laboratory experiments and complementary numerical simulations. We performed experiments at $Ra=5.5\times 10^{9}$ and $1.1\times 10^{10}$ , where streams of 1 mm bubbles were released at various locations from the bottom of the tank along the path of the roll structure. Using three-dimensional particle tracking velocimetry, we simultaneously tracked a large number of bubbles to inspect the pair dispersion, $R^{2}(t)$ , for a range of initial separations, $r$ , spanning one order of magnitude, namely $25\unicode[STIX]{x1D702}\leqslant r\leqslant 225\unicode[STIX]{x1D702}$ ; here $\unicode[STIX]{x1D702}$ is the local Kolmogorov length scale. Pair dispersion, $R^{2}(t)$ , of the bubbles within a quiescent medium was also determined to assess the effect of inhomogeneity and anisotropy induced by the RB convection. Results show that $R^{2}(t)$ underwent a transition phase similar to the ballistic-to-diffusive ( $t^{2}$ -to- $t^{1}$ ) regime in the vicinity of the cell centre; it approached a bulk behavior $t^{3/2}$ in the diffusive regime as the distance away from the cell centre increased. At small $r$ , $R^{2}(t)\propto t^{1}$ is shown in the diffusive regime with a lower magnitude compared to the quiescent case, indicating that the convective turbulence reduced the amplitude of the bubble’s fluctuations. This phenomenon associated to the bubble path instability was further explored by the autocorrelation of the bubble’s horizontal velocity. At large initial separations, $R^{2}(t)\propto t^{2}$ was observed, showing the effect of the roll structure. 
    more » « less