skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chan, Carri W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract IntroductionIn order to be positioned to address the increasing strain of burnout and worsening nurse shortage, a better understanding of factors that contribute to nursing workload is required. This study aims to examine the difference between order‐based and clinically perceived nursing workloads and to quantify factors that contribute to a higher clinically perceived workload. DesignA retrospective cohort study was used on an observational dataset. MethodsWe combined patient flow, nurse staffing and assignment, and workload intensity data and used multivariate linear regression to analyze how various shift, patient, and nurse‐level factors, beyond order‐based workload, affect nurses' clinically perceived workload. ResultsAmong 53% of our samples, the clinically perceived workload is higher than the order‐based workload. Factors associated with a higher clinically perceived workload include weekend or night shifts, shifts with a higher census, patients within the first 24 h of admission, and male patients. ConclusionsThe order‐based workload measures tended to underestimate nurses' clinically perceived workload. We identified and quantified factors that contribute to a higher clinically perceived workload, discussed the potential mechanisms as to how these factors affect the clinically perceived workload, and proposed targeted interventions to better manage nursing workload. Clinical RelevanceBy identifying factors associated with a high clinically perceived workload, the nurse manager can provide appropriate interventions to lighten nursing workload, which may further reduce the risk of nurse burnout and shortage. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  2. Determining emergency department (ED) nurse staffing decisions to balance quality of service and staffing costs can be extremely challenging, especially when there is a high level of uncertainty in patient demand. Increasing data availability and continuing advancements in predictive analytics provide an opportunity to mitigate demand uncertainty by using demand forecasts. In this work, we study a two-stage prediction-driven staffing framework where the prediction models are integrated with the base (made weeks in advance) and surge (made nearly real-time) nurse staffing decisions in the ED. We quantify the benefit of having the ability to use the more expensive surge staffing and identify the importance of balancing demand uncertainty versus system stochasticity. We also propose a near-optimal two-stage staffing policy that is straightforward to interpret and implement. Last, we develop a unified framework that combines parameter estimation, real-time demand forecasts, and nurse staffing in the ED. High-fidelity simulation experiments for the ED demonstrate that the proposed framework has the potential to reduce annual staffing costs by 10%–16% ($2 M–$3 M) while guaranteeing timely access to care. This paper was accepted by David Simchi-Levi, healthcare management. Funding: J. Dong was partially supported by the Division of Civil, Mechanical and Manufacturing Innovation [Grant CMMI-1944209]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2021.02781 . 
    more » « less
  3. Queueing models that are used to capture various service settings typically assume that customers require a single unit of resource (server) to be processed. However, there are many service settings where such an assumption may fail to capture the heterogeneity in resource requirements of different customers. We propose a multiserver queueing model with multiple customer classes in which customers from different classes may require different amounts of resources to be served. We study the optimal scheduling policy for such systems. To balance holding costs, service rates, resource requirement, and priority-induced idleness, we develop an index-based policy that we refer to as the idle-avoid [Formula: see text] rule. For a two-class two-server model, where policy-induced idleness can have a big impact on system performance, we characterize cases where the idle-avoid [Formula: see text] rule is optimal. In other cases, we establish a uniform performance bound on the amount of suboptimality incurred by the idle-avoid [Formula: see text] rule. For general multiclass multiserver queues, we establish the asymptotic optimality of the idle-avoid [Formula: see text] rule in the many-server regime. For long-time horizons, we show that the idle-avoid [Formula: see text] is throughput optimal. Our theoretical results, along with numerical experiments, provide support for the good and robust performance of the proposed policy. 
    more » « less
  4. Service systems are typically limited resource environments where scarce capacity is reserved for the most urgent customers. However, there has been a growing interest in the use of proactive service when a less urgent customer may become urgent while waiting. On one hand, providing service for customers when they are less urgent could mean that fewer resources are needed to fulfill their service requirement. On the other hand, using limited capacity for customers who may never need the service in the future takes the capacity away from other more urgent customers who need it now. To understand this tension, we propose a multiserver queueing model with two customer classes: moderate and urgent. We allow customers to transition classes while waiting. In this setting, we characterize how moderate and urgent customers should be prioritized for service when proactive service for moderate customers is an option. We identify an index, the modified [Formula: see text]-index, which plays an important role in determining the optimal scheduling policy. This index lends itself to an intuitive interpretation of how to balance holding costs, service times, abandonments, and transitions between customer classes. This paper was accepted by David Simchi-Levi, stochastic models and simulation. 
    more » « less
  5. null (Ed.)