skip to main content

Search for: All records

Creators/Authors contains: "Chan, Julia Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chemical/structural maps provide guidance for discovery of exotic quantum states in f -electron intermetallics.
    Free, publicly-accessible full text available August 12, 2023
  2. Abstract

    The crystal structure, electron energy-loss spectroscopy (EELS), heat capacity, and anisotropic magnetic and resistivity measurements are reported for Sn flux grown single crystals of orthorhombic Pr2Co3Ge5(U2Co3Si5-type,Ibam). Our findings show thato-Pr2Co3Ge5hosts nearly trivalent Pr ions, as evidenced by EELS and fits to temperature dependent magnetic susceptibility measurements. Complex magnetic ordering with a partially spin-polarized state emerges nearTsp= 32 K, with a spin reconfiguration transition nearTM= 15 K. Heat capacity measurements show that the phase transitions appear as broad peaks in the vicinity ofTspandTM. The magnetic entropy further reveals that crystal electric field splitting lifts the Hund’s rule degeneracy at low temperatures. Taken together, these measurements show that Pr2Co3Ge5is an environment for complexfstate magnetism with potential strongly correlated electron states.

  3. Abstract Topological semimetals with symmetry-protected band crossings have emerged as a rich landscape to explore intriguing electronic phenomena. Nonsymmorphic symmetries in particular have been shown to play an important role in protecting the crossings along a line (rather than a point) in momentum space. Here we report experimental and theoretical evidence for Dirac nodal line crossings along the Brillouin zone boundaries in PtPb 4 , arising from the nonsymmorphic symmetry of its crystal structure. Interestingly, while the nodal lines would remain gapless in the absence of spin–orbit coupling (SOC), the SOC, in this case, plays a detrimental role to topology by lifting the band degeneracy everywhere except at a set of isolated points. Nevertheless, the nodal line is observed to have a bandwidth much smaller than that found in density functional theory (DFT). Our findings reveal PtPb 4 to be a material system with narrow crossings approximately protected by nonsymmorphic crystalline symmetries.
    Free, publicly-accessible full text available December 1, 2023
  4. Free, publicly-accessible full text available November 22, 2023
  5. Free, publicly-accessible full text available August 2, 2023
  6. Abstract

    We report a layered ternary selenide BaPt4Se6featuring sesqui-selenide Pt2Se3layers sandwiched by Ba atoms. The Pt2Se3layers in this compound can be derived from the Dirac-semimetal PtSe2phase with Se vacancies that form a honeycomb structure. This structure results in a Pt (VI) and Pt (II) mixed-valence compound with both PtSe6octahedra and PtSe4square net coordination configurations. Temperature-dependent electrical transport measurements suggest two distinct anomalies: a resistivity crossover, mimic to the metal-insulator (M-I) transition at ~150 K, and a resistivity plateau at temperatures below 10 K. The resistivity crossover is not associated with any structural, magnetic, or charge order modulated phase transitions. Magnetoresistivity, Hall, and heat capacity measurements concurrently suggest an existing hidden state below 5 K in this system. Angle-resolved photoemission spectroscopy measurements reveal a metallic state and no dramatic reconstruction of the electronic structure up to 200 K.