- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
01000020000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chan, Kevin S. (2)
-
Eliassi-Rad, Tina (2)
-
Torres, Leo (2)
-
Chan, Kevin S (1)
-
Chen, Xun (1)
-
Estrada, Ernesto (1)
-
Hao, Yu (1)
-
Iqbal, Umar (1)
-
Krishnamurthy, Srikanth V. (1)
-
Li, Guoren (1)
-
Li, Shasha (1)
-
Man, Keyu (1)
-
Qian, Zhiyun (1)
-
Shafiq, Zubair (1)
-
Tong, Hanghang (1)
-
Wang, Zhongjie (1)
-
Zhang, Zheng (1)
-
Zhu, Shitong (1)
-
Zou, Xiaochen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhu, Shitong ; Wang, Zhongjie ; Chen, Xun ; Li, Shasha ; Man, Keyu ; Iqbal, Umar ; Qian, Zhiyun ; Chan, Kevin S. ; Krishnamurthy, Srikanth V. ; Shafiq, Zubair ; et al ( , ACSAC: Annual Computer Security Applications Conference)Online advertisers have been quite successful in circumventing traditional adblockers that rely on manually curated rules to detect ads. As a result, adblockers have started to use machine learning (ML) classifiers for more robust detection and blocking of ads. Among these, AdGraph which leverages rich contextual information to classify ads, is arguably, the state of the art ML-based adblocker. In this paper, we present a4, a tool that intelligently crafts adversarial ads to evade AdGraph. Unlike traditional adversarial examples in the computer vision domain that can perturb any pixels (i.e., unconstrained), adversarial ads generated by a4 are actionable in the sense that they preserve the application semantics of the web page. Through a series of experiments we show that a4 can bypass AdGraph about 81% of the time, which surpasses the state-of-the-art attack by a significant margin of 145.5%, with an overhead of <20% and perturbations that are visually imperceptible in the rendered webpage. We envision that a4’s framework can be used to potentially launch adversarial attacks against other ML-based web applications.more » « less
-
Torres, Leo ; Chan, Kevin S ; Eliassi-Rad, Tina ; Estrada, Ernesto ( , Journal of Complex Networks)Abstract Graph embedding seeks to build a low-dimensional representation of a graph $G$. This low-dimensional representation is then used for various downstream tasks. One popular approach is Laplacian Eigenmaps (LE), which constructs a graph embedding based on the spectral properties of the Laplacian matrix of $G$. The intuition behind it, and many other embedding techniques, is that the embedding of a graph must respect node similarity: similar nodes must have embeddings that are close to one another. Here, we dispose of this distance-minimization assumption. Instead, we use the Laplacian matrix to find an embedding with geometric properties instead of spectral ones, by leveraging the so-called simplex geometry of $G$. We introduce a new approach, Geometric Laplacian Eigenmap Embedding, and demonstrate that it outperforms various other techniques (including LE) in the tasks of graph reconstruction and link prediction.more » « less