skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chan, Natalie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract FeII‐ and α‐ketoglutarate‐dependent halogenases and oxygenases can catalyze site‐selective functionalization of C−H bonds via a variety of C−X bond forming reactions, but achieving high chemoselectivity for functionalization using non‐native functional groups remains rare. The current study shows that directed evolution can be used to engineer variants of the dioxygenase SadX that address this challenge. Site‐selective azidation of succinylated amino acids and a succinylated amine was achieved as a result of mutations throughout the SadX structure. The installed azide group was reduced to a primary amine, and the succinyl group required for azidation was enzymatically cleaved to provide the corresponding amine. These results provide a promising starting point for evolving additional SadX variants with activity on structurally distinct substrates and for enabling enzymatic C−H functionalization with other non‐native functional groups. 
    more » « less
  2. null (Ed.)