Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate change is reducing winter ice cover on lakes; yet, the full societal and environmental consequences of this ice loss are poorly understood. The socioeconomic implications of declining ice include diminished access to ice-based cultural activities, safety concerns in traversing ice, changes in fisheries, increases in shoreline erosion, and declines in water storage. Longer ice-free seasons allow more time and capacity for water to warm, threatening water quality and biodiversity. Food webs likely will reorganize, with constrained availability of ice-associated and cold-water niches, and ice loss will affect the nature, magnitude, and timing of greenhouse gas emissions. Examining these rapidly emerging changes will generate more-complete models of lake dynamics, and transdisciplinary collaborations will facilitate translation to effective management and sustainability.more » « less
-
Abstract Wildfire smoke covers entire continents, depositing aerosols and reducing solar radiation fluxes to millions of freshwater ecosystems, yet little is known about impacts on lakes. Here, we quantified trends in the spatial extent of smoke cover in California, USA, and assessed responses of gross primary production and ecosystem respiration to smoke in 10 lakes spanning a gradient in water clarity and nutrient concentrations. From 2006 − 2022, the maximum extent of medium or high-density smoke occurring between June-October increased by 300,000 km2. In the three smokiest years (2018, 2020, 2021), lakes experienced 23 − 45 medium or high-density smoke days, characterized by 20% lower shortwave radiation fluxes and five-fold higher atmospheric fine particulate matter concentrations. Ecosystem respiration generally declined during smoke cover, especially in low-nutrient, cold lakes, whereas responses of primary production were more variable. Lake attributes and seasonal timing of wildfires will mediate the effects of smoke on lakes.more » « less
-
Abstract Some biological invasions can result in algae blooms in the nearshore of clear lakes. We studied if an invasive crayfish (Pacifastacus leniusculus) modified the biomass and community composition of benthic macroinvertebrates and therefore led to a trophic cascade resulting in increased periphyton biomass, elevated littoral primary productivity, and benthic algae bloom in a lake with remarkable transparency [Crater Lake, Oregon, USA]. After quantifying the changes in the spatial distribution of invasive crayfish over a 13-year period, we compared biomass and community composition of littoral–benthic macroinvertebrates, periphyton biovolume, community composition, nutrient limitation, and the development of benthic algae bloom in locations with high and low crayfish density. In addition, we determined if the alteration in community structure resulted in directional changes to gross primary production and ecosystem respiration. The extent of crayfish distribution along the shoreline of Crater Lake doubled over a 13-year period, leaving less than 20% of the shoreline free from crayfish. At high crayfish density sites, benthic macroinvertebrate biomass was 99% lower, and taxa richness was 50% lower than at low crayfish areas. High crayfish sites show tenfold greater periphyton biovolume, sixfold higher periphyton biomass (chlorophylla), twofold higher metabolic productivity, and the presence of large filamentous algae (Cladophorasp.). The invasion of crayfish had negative consequences for a lake protected under the management of the USA National Park Service, with direct impacts on many levels of ecological organization.more » « less
-
Abstract Drought and human land use have increased dust emissions in the western United States. However, the ecological sensitivity of remote lakes to dust deposition is not well understood and to date has largely been assessed through spatial and temporal correlations. Using in situ bioassays, we investigated the effects of dust enrichment on the production, chlorophylla(Chla) concentration, and taxonomic composition of phytoplankton and microbial communities in three western US mountain lakes. We found that dust‐derived nutrients increased Chlaconcentration in all three lakes, but the magnitude of the effect varied from 32% to 226%. This variation was related to pre‐existing lake conditions, such as trophic status, pH, and nutrient limitation. In Castle Lake, co‐limited by N and P, dust bioassays showed an increase in Chlacontent per cell but suppressed primary production and increased dark14C uptake. In contrast, both Flathead Lake and The Loch were primarily P‐limited and exhibited increases in Chlaconcentration. The contrasting Chlaand primary production results from Castle Lake are consistent with the alleviation of nitrogen limitation where energy Adenosine triphosphate (ATP) is used for nutrient assimilation instead of carbon fixation. Dust additions also altered the algal and microbial communities. The latter included the addition of new phyla (e.g.,Deinococcota), indicating that dust‐delivered microbes have the potential to thrive in receiving lakes. Our study provides the first short‐term experimental in situ evidence of rapid ecosystem effects in mountain lakes following dust exposure. The results emphasize the need for continued research in this area to understand interactions of both the short‐ and long‐term consequences of dust‐induced perturbations in remote lakes in the context of global changes.more » « less
-
Abstract River metabolism and, thus, carbon cycling are governed by gross primary production and ecosystem respiration. Traditionally river metabolism is derived from diel dissolved oxygen concentrations, which cannot resolve diel changes in ecosystem respiration. Here, we compare river metabolism derived from oxygen concentrations with estimates from stable oxygen isotope signatures (δ18O2) from 14 sites in rivers across three biomes using Bayesian inverse modeling. We find isotopically derived ecosystem respiration was greater in the day than night for all rivers (maximum change of 113 g O2 m−2 d−1, minimum of 1 g O2 m−2 d−1). Temperature (20 °C) normalized rates of ecosystem respiration and gross primary production were 1.1 to 87 and 1.5 to 22-fold higher when derived from oxygen isotope data compared to concentration data. Through accounting for diel variation in ecosystem respiration, our isotopically-derived rates suggest that ecosystem respiration and microbial carbon cycling in rivers is more rapid than predicted by traditional methods.more » « less
-
Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. Lake primary production is strongly controlled by inputs of nutrients and colored dissolved organic matter. While past studies have developed mathematical models of this nutrient-color paradigm, broad empirical tests of these models are scarce. We compiled data from 58 diverse and globally distributed and mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. These lakes varied widely in size (0.02-2300 km2), pelagic gross primary production (20-8000 mg C m-2 d-1), and other characteristics. The data package includes high-frequency dissolved oxygen, water temperature, wind speed, and solar radiation data as well as daily estimates of GPP and ER derived from those data. In addition, the data package includes median in-lake and stream concentrations of dissolved organic carbon and total phosphorus for a subset of 18 of those lakes.more » « less
An official website of the United States government
