skip to main content

Search for: All records

Creators/Authors contains: "Chandran, B. D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In van der Holst et al. (2019), we modeled the solar corona and inner heliosphere of the first encounter of NASA’s Parker Solar Probe (PSP) using the Alfvén Wave Solar atmosphere Model (AWSoM) with Air Force Data Assimilative Photospheric flux Transport–Global Oscillation Network Group magnetograms, and made predictions of the state of the solar wind plasma for the first encounter. AWSoM uses low-frequency Alfvén wave turbulence to address the coronal heating and acceleration. Here, we revise our simulations, by introducing improvements in the energy partitioning of the wave dissipation to the electron and anisotropic proton heating and using amore »better grid design. We compare the new AWSoM results with the PSP data and find improved agreement with the magnetic field, turbulence level, and parallel proton plasma beta. To deduce the sources of the solar wind observed by PSP, we use the AWSoM model to determine the field line connectivity between PSP locations near the perihelion at 2018 November 6 UT 03:27 and the solar surface. Close to the perihelion, the field lines trace back to a negative-polarity region about the equator.« less
    Free, publicly-accessible full text available February 1, 2023
  2. Abstract The SWEAP instrument suite on Parker Solar Probe (PSP) has detected numerous proton beams associated with coherent, circularly polarized, ion-scale waves observed by PSP’s FIELDS instrument suite. Measurements during PSP Encounters 4−8 revealed pronounced complex shapes in the proton velocity distribution functions (VDFs), in which the tip of the beam undergoes strong perpendicular diffusion, resulting in VDF level contours that resemble a “hammerhead.” We refer to these proton beams, with their attendant “hammerhead” features, as the ion strahl. We present an example of these observations occurring simultaneously with a 7 hr ion-scale wave storm and show results from amore »preliminary attempt at quantifying the occurrence of ion-strahl broadening through three-component ion VDF fitting. We also provide a possible explanation of the ion perpendicular scattering based on quasilinear theory and the resonant scattering of beam ions by parallel-propagating, right circularly polarized, fast magnetosonic/whistler waves.« less
    Free, publicly-accessible full text available January 1, 2023
  3. Abstract One of the striking observations from the Parker Solar Probe (PSP) spacecraft is the prevalence in the inner heliosphere of large amplitude, Alfvénic magnetic field reversals termed switchbacks . These δ B R / B ∼  ( 1 ) fluctuations occur over a range of timescales and in patches separated by intervals of quiet, radial magnetic field. We use measurements from PSP to demonstrate that patches of switchbacks are localized within the extensions of plasma structures originating at the base of the corona. These structures are characterized by an increase in alpha particle abundance, Mach number, plasma βmore »and pressure, and by depletions in the magnetic field magnitude and electron temperature. These intervals are in pressure balance, implying stationary spatial structure, and the field depressions are consistent with overexpanded flux tubes. The structures are asymmetric in Carrington longitude with a steeper leading edge and a small (∼1°) edge of hotter plasma and enhanced magnetic field fluctuations. Some structures contain suprathermal ions to ∼85 keV that we argue are the energetic tail of the solar wind alpha population. The structures are separated in longitude by angular scales associated with supergranulation. This suggests that these switchbacks originate near the leading edge of the diverging magnetic field funnels associated with the network magnetic field—the primary wind sources. We propose an origin of the magnetic field switchbacks, hot plasma and suprathermals, alpha particles in interchange reconnection events just above the solar transition region and our measurements represent the extended regions of a turbulent outflow exhaust.« less
    Free, publicly-accessible full text available December 1, 2022
  4. The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 R ⊙ , allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP’s fourth solar encounter, which was likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence was found to have lower amplitudes, higher magnetic compressibility, a steeper magnetic field spectrum (with a spectralmore »index close to –5/3 rather than –3/2), a lower Alfvénicity, and a ‘1∕ f ’ break at much lower frequencies. These are also features of slow wind at 1 au, suggesting the near-Sun streamer belt wind to be the prototypical slow solar wind. The transition in properties occurs at a predicted angular distance of ≈4° from the HCS, suggesting ≈8° as the full-width of the streamer belt wind at these distances. While the majority of the Alfvénic turbulence energy fluxes measured by PSP are consistent with those required for reflection-driven turbulence models of solar wind acceleration, the fluxes in the streamer belt are significantly lower than the model predictions, suggesting that additional mechanisms are necessary to explain the acceleration of the streamer belt solar wind.« less