Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

WinnerTakeAll (WTA) refers to the neural operation that selects a (typically small) group of neurons from a large neuron pool. It is conjectured to underlie many of the brain’s fundamental computational abilities.However, not much is known about the robustness of a spikebased WTA network to the inherent randomness of the input spike trains. In this work, we consider a spikebased k–WTA model where in n randomly generated input spike trains compete with each other based on their underlying firing rates, and k winners are supposed to be selected. We slot the time evenly with each time slot of length 1ms, and model then input spike trains as n independent Bernoulli processes. We analytically characterize the minimum waiting time needed so that a target minimax decision accuracy (success probability) can be reached.We first derive an informationtheoretic lower bound on the decision time. We show that to guarantee a (minimax) decision error≤δ(whereδ∈(0,1)), the waiting time of any WTA circuit is at least((1−δ) log(k(n−k) + 1)−1)TR,whereR ⊆(0,1) is a finite set of rates, and TR is a difficulty parameter of a WTA task with respect to setRfor independent input spike trains.Additionally,TR is independent ofδ,n, andk. We then design a simple WTA circuit whose waiting time isO((log(1δ)+ logk(n−k))TR), provided that the local memory of each output neuron is sufficiently long. It turns out that for any fixed δ, this decision time is orderoptimal (i.e., it 2 matches the above lower bound up to a multiplicative constant factor) in terms of its scaling inn,k, and TR.more » « less

Winnertakeall (WTA) refers to the neural operation that selects a (typically small) group of neurons from a large neuron pool. It is conjectured to underlie many of the brain’s fundamental computational abilities. However, not much is known about the robustness of a spikebased WTA network to the inherent randomness of the input spike trains.In this work, we consider a spikebased k–WTA model wherein n randomly generated input spike trains compete with each other based on their underlying firing rates and k winners are supposed to be selected. We slot the time evenly with each time slot of length 1 ms and model then input spike trains as n independent Bernoulli processes. We analytically characterize the minimum waiting time needed so that a target minimax decision accuracy (success probability) can be reached. We first derive an informationtheoretic lower bound on the waiting time. We show that to guarantee a (minimax) decision error≤δ(whereδ∈(0,1)), the waiting time of any WTA circuit is at least ((1−δ)log(k(n−k)+1)−1)TR,where R⊆(0,1)is a finite set of rates and TR is a difficulty parameter of a WTA task with respect to set R for independent input spike trains. Additionally,TR is independent of δ,n,and k. We then design a simple WTA circuit whose waiting time is 2524L. Su, C.J. Chang, and N. Lynch O((log(1δ)+logk(n−k))TR),provided that the local memory of each output neuron is sufficiently long. It turns out that for any fixed δ, this decision time is orderoptimal (i.e., it matches the above lower bound up to a multiplicative constant factor) in terms of its scaling inn,k, and TR.more » « less