skip to main content

Search for: All records

Creators/Authors contains: "Chang, Chih-hung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sintering of nanoparticles deposited onto rigid or flexible substrate is required for many devices that use continuous and patterned thin films. An emerging need in this area is to perform nanoparticle sintering under ambient conditions, at high speeds, and with throughput that is compatible with high speed nanoparticle deposition techniques. Intense Pulsed Light sintering (IPL) uses a high energy, broad area and broad spectrum beam of xenon lamp light to sinter metallic and non-metallic nanoparticles. The capability of IPL to meet the above needs has been demonstrated. This paper experimentally examines temperature evolution and densification during IPL. It is shown, for the first time, that temperature rise and densification in IPL are related to each other. A coupled optical-thermal-sintering model on the nanoscale is developed, to understand this phenomenon. This model is used to show that the change in nanoscale shape of the nanoparticle ensemble due to sintering, reduces the optically induced heating as the densification proceeds, which provides a better explanation of experimental observations as compared to current models of IPL. The implications of this new understanding on the performance of IPL are also discussed.
  2. Low-cost materials, scalable manufacturing, and high power conversion efficiency are critical enablers for large-scale applications of photovoltaic (PV) cells. Cu 2 ZnSn(S,Se) 4 (CZTSSe) has emerged as a promising PV material due to its low-cost earth-abundant nature and the low toxicity of its constituents. We present a compact and environmentally friendly route for preparing metal sulfide (metals are Cu, Zn, and Sn) nanoparticles (NPs) and optimize their annealing conditions to obtain uniform carbon-free CZTSSe thin films with large grain sizes. Further, the solution-stable binary NP inks synthesized in an aqueous solution with additives are shown to inhibit the formation of secondary phases during annealing. A laboratory-scale PV cell with a Al/AZO/ZnO/CdS/CZTSSe/Mo-glass structure is fabricated without anti-reflective coatings, and a 9.08% efficiency under AM1.5G illumination is demonstrated for the first time. The developed scalable, energy-efficient, and environmentally sustainable NP synthesis approach can enable integration of NP synthesis with emerging large-area deposition and annealing methods for scalable fabrication of CZTSSe PV cells.