skip to main content

Search for: All records

Creators/Authors contains: "Chang, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Few techniques are available for elucidating the nature of forces that drive subcellular behaviors. Here we develop two complementary ones: 1) femtosecond stereotactic laser ablation (FESLA), which rapidly creates complex cuts of subcellular structures, thereby allowing precise dissection of when, where, and in what direction forces are generated; and 2) assessment of subcellular fluid flows, by comparing direct flow measurements, using microinjected fluorescent nanodiamonds, to large-scale fluid-structure simulations of different models of force transduction. We apply these to study centrosomes in Caenorhabditis elegans early embryos, and use the data to construct a biophysically-based model of centrosome dynamics. Taken together, wemore »demonstrate that cortical pulling forces provide a general explanation for many behaviors mediated by centrosomes, including pronuclear migration/centration and rotation, metaphase spindle positioning, asymmetric spindle elongation and spindle oscillations. In sum, this work establishes new methodologies for disentangling the forces responsible for cell biological phenomena.« less
    Free, publicly-accessible full text available November 1, 2022
  2. Abstract Surface acoustic waves are commonly used in classical electronics applications, and their use in quantum systems is beginning to be explored, as evidenced by recent experiments using acoustic Fabry–Pérot resonators. Here we explore their use for quantum communication, where we demonstrate a single-phonon surface acoustic wave transmission line, which links two physically separated qubit nodes. Each node comprises a microwave phonon transducer, an externally controlled superconducting variable coupler, and a superconducting qubit. Using this system, precisely shaped individual itinerant phonons are used to coherently transfer quantum information between the two physically distinct quantum nodes, enabling the high-fidelity node-to-node transfermore »of quantum states as well as the generation of a two-node Bell state. We further explore the dispersive interactions between an itinerant phonon emitted from one node and interacting with the superconducting qubit in the remote node. The observed interactions between the phonon and the remote qubit promise future quantum-optics-style experiments with itinerant phonons.« less
    Free, publicly-accessible full text available December 1, 2022
  3. We investigate dynamic versions of geometric set cover and hitting set where points and ranges may be inserted or deleted, and we want to efficiently maintain an (approximately) optimal solution for the current problem instance. While their static versions have been extensively studied in the past, surprisingly little is known about dynamic geometric set cover and hitting set. For instance, even for the most basic case of one-dimensional interval set cover and hitting set, no nontrivial results were known. The main contribution of our paper are two frameworks that lead to efficient data structures.
  4. Charge densities of cationic polymers adsorbed to lipid bilayers are estimated from second harmonic generation (SHG) spectroscopy and quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. The systems surveyed included poly(vinylamine hydrochloride) (PVAm), poly(diallyldimethylammonium chloride) (PDADMAC), poly- l -lysine (PLL), and poly- l -arginine (PLR), as well as polyalcohol controls. Upon accounting for the number of positive charges associated with each polyelectrolyte, the binding constants and apparent free energies of adsorption as estimated from SHG data are comparable despite differences in molecular masses and molecular structure, with Δ G ads values of −61 ± 2, −58 ± 2, −57 ±more »1, −52 ± 2, −52 ± 1 kJ mol −1 for PDADMAC 400 , PDADMAC 100 , PVAm, PLL, and PLR, respectively. Moreover, we find charge densities for polymer adlayers of approximately 0.3 C m −2 for poly(diallyldimethylammonium chloride) while those of poly(vinylamine) hydrochloride, poly- l -lysine, and poly- l -arginine are approximately 0.2 C m −2 . Time-dependent studies indicate that polycation adsorption to supported lipid bilayers is only partially reversible for most of the polymers explored. Poly(diallyldimethylammonium chloride) does not demonstrate reversible binding even over long timescales (>8 hours).« less