Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Incivility remains a major challenge for online discussion platforms, to such an extent that even conversations between well-intentioned users can often derail into uncivil behavior. Traditionally, platforms have relied on moderators to---with or without algorithmic assistance---take corrective actions such as removing comments or banning users. In this work we propose a complementary paradigm that directly empowers users by proactively enhancing their awareness about existing tension in the conversation they are engaging in and actively guides them as they are drafting their replies to avoid further escalation. As a proof of concept for this paradigm, we design an algorithmic tool that provides such proactive information directly to users, and conduct a user study in a popular discussion platform. Through a mixed methods approach combining surveys with a randomized controlled experiment, we uncover qualitative and quantitative insights regarding how the participants utilize and react to this information. Most participants report finding this proactive paradigm valuable, noting that it helps them to identify tension that they may have otherwise missed and prompts them to further reflect on their own replies and to revise them. These effects are corroborated by a comparison of how the participants draft their reply when our tool warns themmore »Free, publicly-accessible full text available November 7, 2023
-
To address the widespread problem of uncivil behavior, many online discussion platforms employ human moderators to take action against objectionable content, such as removing it or placing sanctions on its authors. Thisreactive paradigm of taking action against already-posted antisocial content is currently the most common form of moderation, and has accordingly underpinned many recent efforts at introducing automation into the moderation process. Comparatively less work has been done to understand other moderation paradigms---such as proactively discouraging the emergence of antisocial behavior rather than reacting to it---and the role algorithmic support can play in these paradigms. In this work, we investigate such a proactive framework for moderation in a case study of a collaborative setting: Wikipedia Talk Pages. We employ a mixed methods approach, combining qualitative and design components for a holistic analysis. Through interviews with moderators, we find that despite a lack of technical and social support, moderators already engage in a number of proactive moderation behaviors, such as preemptively intervening in conversations to keep them on track. Further, we explore how automation could assist with this existing proactive moderation workflow by building a prototype tool, presenting it to moderators, and examining how the assistance it provides might fit intomore »Free, publicly-accessible full text available November 7, 2023
-
This paper describes the design and functionality of ConvoKit, an open-source toolkit for analyzing conversations and the social interactions embedded within. ConvoKit provides an unified framework for representing and manipulating conversational data, as well as a large and diverse collection of conversational datasets. By providing an intuitive interface for exploring and interacting with conversational data, this toolkit lowers the technical barriers for the broad adoption of computational methods for conversational analysis.
-
Discourse involves two perspectives: a person’s intention in making an utterance and others’ perception of that utterance. The misalignment between these perspectives can lead to undesirable outcomes, such as misunderstandings, low productivity and even overt strife. In this work, we present a computational framework for exploring and comparing both perspectives in online public discussions. We combine logged data about public comments on Facebook with a survey of over 16,000 people about their intentions in writing these comments or about their perceptions of comments that others had written. Unlike previous studies of online discussions that have largely relied on third-party labels to quantify properties such as sentiment and subjectivity, our approach also directly captures what the speakers actually intended when writing their comments. In particular, our analysis focuses on judgments of whether a comment is stating a fact or an opinion, since these concepts were shown to be often confused. We show that intentions and perceptions diverge in consequential ways. People are more likely to perceive opinions than to intend them, and linguistic cues that signal how an utterance is intended can differ from those that signal how it will be perceived. Further, this misalignment between intentions and perceptions can bemore »
-
People often share personal narratives in order to seek advice from others. To properly infer the narrator’s intention, one needs to apply a certain degree of common sense and social intuition. To test the capabilities of NLP systems to recover such intuition, we introduce the new task of inferring what is the adviceseeking goal behind a personal narrative. We formulate this as a cloze test, where the goal is to identify which of two advice-seeking questions was removed from a given narrative. The main challenge in constructing this task is finding pairs of semantically plausible adviceseeking questions for given narratives. To address this challenge, we devise a method that exploits commonalities in experiences people share online to automatically extract pairs of questions that are appropriate candidates for the cloze task. This results in a dataset of over 20,000 personal narratives, each matched with a pair of related advice-seeking questions: one actually intended by the narrator, and the other one not. The dataset covers a very broad array of human experiences, from dating, to career options, to stolen iPads. We use human annotation to determine the degree to which the task relies on common sense and social intuition in addition tomore »
-
One of the main challenges online social systems face is the prevalence of antisocial behavior, such as harassment and personal attacks. In this work, we introduce the task of predicting from the very start of a conversation whether it will get out of hand. As opposed to detecting undesirable behavior after the fact, this task aims to enable early, actionable prediction at a time when the conversation might still be salvaged. To this end, we develop a framework for capturing pragmatic devices---such as politeness strategies and rhetorical prompts---used to start a conversation, and analyze their relation to its future trajectory. Applying this framework in a controlled setting, we demonstrate the feasibility of detecting early warning signs of antisocial behavior in online discussions.
-
One of the main challenges online social systems face is the prevalence of antisocial behavior, such as harassment and personal attacks. In this work, we introduce the task of predicting from the very start of a conversation whether it will get out of hand. As opposed to detecting undesirable behavior after the fact, this task aims to enable early, actionable prediction at a time when the conversation might still be salvaged. To this end, we develop a framework for capturing pragmatic devices---such as politeness strategies and rhetorical prompts---used to start a conversation, and analyze their relation to its future trajectory. Applying this framework in a controlled setting, we demonstrate the feasibility of detecting early warning signs of antisocial behavior in online discussions.