skip to main content

Search for: All records

Creators/Authors contains: "Chang, Ming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2024
  2. Beta-phase gallium oxide ([Formula: see text]-Ga 2 O 3 ) is a promising semiconductor for high frequency, high temperature, and high voltage applications. In addition to the [Formula: see text]-phase, numerous other polymorphs exist and understanding the competition between phases is critical to control practical devices. The phase formation sequence of Ga 2 O 3 , starting from amorphous thin films, was determined using lateral-gradient laser spike annealing at peak temperatures of 500–1400 °C on 400 μs to 10 ms timescales, with transformations characterized by optical microscopy, x-ray diffraction, and transmission electron microscopy (TEM). The resulting phase processing map showed the [Formula: see text]-phase, a defect-spinel structure, first nucleating under all annealing times for temperatures from 650 to 800 °C. The cross-sectional TEM at the onset of the [Formula: see text]-phase formation showed nucleation near the film center with no evidence of heterogeneous nucleation at the interfaces. For temperatures above 850 °C, the thermodynamically stable [Formula: see text]-phase was observed. For anneals of 1–4 ms and temperatures below 1200 °C, small randomly oriented grains were observed. Large grains were observed for anneals below 1 ms and above 1200 °C, with anneals above 4 ms and 1200 °C resulting in textured films. The formation of the [Formula: see text]-phase prior tomore »[Formula: see text]-phase, coupled with the observed grain structure, suggests that the [Formula: see text]-phase is kinetically preferred during thermal annealing of amorphous films, with [Formula: see text]-phase subsequently forming by nucleation at higher temperatures. The low surface energy of the [Formula: see text]-phase implied by these results suggests an explanation for the widely observed [Formula: see text]-phase inclusions in [Formula: see text]-phase Ga 2 O 3 films grown by a variety of synthesis methods.« less
  3. Observations on the lee of a topographic ridge show that the turbulence kinetic energy (TKE) dissipation rate due to shear instabilities is three orders of magnitude higher than the typical value in the open ocean. Laboratory-scale studies at low Reynolds number suggest that high turbulent dissipation occurs primarily within the core region of shear instabilities. However, field-scale studies indicate that high turbulence is mainly populated along the braids of shear instabilities. In this study, a high-resolution, resolving the Ozmidov-scale, non-hydrostatic model with Large Eddy Simulation (LES) turbulent closure is applied to investigate dominant mechanisms that control the spatial and temporal scales of shear instabilities and resulting mixing in stratified shear flow at high Reynolds number. The simulated density variance dissipation rate is elevated in the cusp-like bands of shear instabilities with a specific period, consistent with the acoustic backscatter taken by shipboard echo sounder. The vertical length scale of each cusp-like band is nearly half of the vertical length scale of the internal lee wave. However, it is consistent with instabilities originating from a shear layer based on linear stability theory. The model results indicate that the length scale and/or the period of shear instabilities are the key parameters tomore »the mixing enhancement that increases with lateral Froude number Fr L , i.e. stronger shear and/or steeper ridge.« less
  4. Salicylic acid (SA) is a plant defense signal that mediates local and systemic immune responses against pathogen invasion. However, the underlying mechanism of SA-mediated defense is very complex due to the involvement of various positive and negative regulators to fine-tune its signaling in diverse pathosystems. Upon pathogen infections, elevated level of SA promotes massive transcriptional reprogramming in which Non-expresser of PR genes 1 (NPR1) acts as a central hub and transcriptional coactivator in defense responses. Recent findings show that Enhanced Disease Susceptibility 1 (EDS1) also functions as a transcriptional coactivator and stimulates the expression of PR1 in the presence of NPR1 and SA. Furthermore, EDS1 stabilizes NPR1 protein level, while NPR1 sustains EDS1 expression during pathogenic infection. The interaction of NPR1 and EDS1 coactivators initiates transcriptional reprogramming by recruiting cyclin-dependent kinase 8 in the Mediator complex to control immune responses. In this review, we highlight the recent breakthroughs that considerably advance our understanding on how transcriptional coactivators interact with their functional partners to trigger distinct pathways to facilitate immune responses, and how SA accumulation induces dynamic changes in NPR1 structure for transcriptional reprogramming. In addition, the functions of different Mediator subunits in SA-mediated plant immunity are also discussed in lightmore »of recent discoveries. Taken together, the available evidence suggests that transcriptional coactivators are essential and potent regulators of plant defense pathways and play crucial roles in coordinating plant immune responses during plant–pathogen interactions.« less
  5. Abstract

    Large-amplitude internal solitary wave (ISW) shoaling, breaking, and run-up was tracked continuously by a dense and rapidly sampling array spanning depths from 500 m to shore near Dongsha Atoll in the South China Sea. Incident ISW amplitudes ranged between 78 and 146 m with propagation speeds between 1.40 and 2.38 m s−1. The ratio between wave amplitude and a critical amplitudeA0controlled breaking type and was related to wave speedcpand depth. Fissioning ISWs generated larger trailing elevation waves when the thermocline was deep and evolved into onshore propagating bores in depths near 100 m. Collapsing ISWs contained significant mixing and little upslope bore propagation. Bores contained significant onshore near-bottom kinetic and potential energy flux and significant offshore rundown and relaxation phases before and after the bore front passage, respectively. Bores on the shallow forereef drove bottom temperature variation in excess of 10°C and near-bottom cross-shore currents in excess of 0.4 m s−1. Bores decelerated upslope, consistent with upslope two-layer gravity current theory, though run-up extentXrwas offshore of the predicted gravity current location. Background stratification affected the bore run-up, withXrfarther offshore when the Korteweg–de Vries nonlinearity coefficientαwas negative. Fronts associated with the shoaling local internal tide, but equal in magnitude tomore »the soliton-generated bores, were observed onshore of 20-m depth.

    « less
  6. Abstract Internal solitary waves are ubiquitous in coastal regions and marginal seas of the world’s oceans. As the waves shoal shoreward, they lose the energy obtained from ocean tides through globally significant turbulent mixing and dissipation and consequently pump nutrient-rich water to nourish coastal ecosystem. Here we present fine-scale, direct measurements of shoaling internal solitary waves in the South China Sea, which allow for an examination of the physical processes triggering the intensive turbulent mixing in their interior. These are convective breaking in the wave core and the collapse of Kelvin–Helmholtz billows in the wave rear and lower periphery of the core, often occurring simultaneously. The former takes place when the particle velocity exceeds the wave’s propagating velocity. The latter is caused by the instability induced by the strong velocity shear overcoming the stratification. The instabilities generate turbulence levels four orders of magnitude larger than that in the open ocean.
  7. Abstract

    Shoaling internal solitary waves (ISWs) were observed at three mooring sites on the upper continental slope in the northern South China Sea over a period of 5–11 months at water depths of 600, 430, and 350 m. Their properties exhibit a fortnightly variation because of their origination from internal tides. ISW amplitudes, current speeds, and propagation speeds are greater and wave widths narrower in summer than in winter, consistent with the effect of increased stratification in summer, as confirmed by Dubreil‐Jacotin‐Long (DJL) solutions. As ISWs propagate up the slope, the differential response of current and propagation speeds to bottom topography provides an opportunity for convective breaking of ISWs. Convective breaking occurs mostly between 430 and 600‐m depths and exhibits a marginal convective instability status such that (a) the maximum current speed remains nearly equal to the propagation speed and (b) for large‐amplitude waves the current speed and propagation speed decrease at nearly the same rate between 600 and 430‐m depths. The marginal convective instability occurs because ISWs adjust gradually to the gently sloping bottom and preserve their structural integrity after the onset of breaking. Vertical velocity variances behind the leading ISWs, which serve as a surrogate for the number of trailingmore »waves, increase when ISWs reach the convective breaking limit, suggesting that convective breaking may accelerate the fission process in leading ISWs or that convective breaking is accompanied by an enhanced nonlinear dispersion of waves trailing ISWs generated by internal tides.

    « less