skip to main content

Search for: All records

Creators/Authors contains: "Chang, Mingqin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    If you live in an apartment or a house, you will notice that your home has different rooms separated by walls. A plant is just like your home, except there are many small rooms, called cells. Plant cells, like rooms, are also separated by cell walls. Cell walls are unique and are not found in animal cells. In a building, if you want to turn one large room into two small rooms, you build a new wall to divide it. This is similar to how a plant cell divides into two cells during cell division. To build a wall in a building, you need to employ construction workers, design the building plan, buy building materials, and finally assembly the wall. How does the plant cell take care of these different jobs? This article explains how the cell wall is built in a plant cell during cell division. 
    more » « less
  2. Abstract Coat Protein complex II (COPII), a coat protein complex that forms vesicles on the endoplasmic reticulum (ER), mediates trafficking to the Golgi. While metazoans have few genes encoding each COPII component, plants have expanded these gene families, leading to the hypothesis that plant COPII has functionally diversified. In the moss Physcomitrium (Physcomitrella) patens, the Sec23/24 gene families are each composed of seven genes. Silencing Sec23/24 revealed isoform-specific contributions to polarized growth, with the closely related Sec23D/E and Sec24C/D essential for protonemal development. Focusing on Sec23, we discovered that Sec23D/E mediate ER-to Golgi transport and are essential for tip growth, with Sec23D localizing to presumptive ER exit sites. In contrast, Sec23A, B, C, F, and G are dispensable and do not quantitatively affect ER-to-Golgi trafficking. However, Δsec23abcfg plants exhibited reduced secretion of plasma membrane cargo. Of the four highly expressed protonemal Sec23 genes, Sec23F/G are members of a divergent Sec23 clade specifically retained in land plants. Notably, Sec23G accumulates on ER-associated foci that are significantly larger, do not overlap with, and are independent of Sec23D. While Sec23D/E form ER exit sites and function as bona fide COPII components essential for tip-growing protonemata, Sec23G and the closely related Sec23F have likely functionally diversified, forming separate and independent ER exit sites and participating in Golgi-independent trafficking pathways. 
    more » « less
  3. Cytokinesis in plants is fundamentally different from that in animals and fungi. In plant cells, a cell plate forms through the fusion of cytokinetic vesicles and then develops into the new cell wall, partitioning the cytoplasm of the dividing cell. The formation of the cell plate entails multiple stages that involve highly orchestrated vesicle accumulation, fusion and membrane maturation, which occur concurrently with the timely deposition of polysaccharides such as callose, cellulose and cross‐linking glycans. This review summarizes the major stages in cytokinesis, endomembrane components involved in cell plate assembly and its transition to a new cell wall. An animation that can be widely used for educational purposes further summarizes the process.

    more » « less
  4. Abstract

    CRISPR‐Cas9 has been shown to be a valuable tool in recent years, allowing researchers to precisely edit the genome using an RNA‐guided nuclease to initiate double‐strand breaks. Until recently, classical RAD51‐mediated homologous recombination has been a powerful tool for gene targeting in the mossPhyscomitrella patens. However, CRISPR‐Cas9‐mediated genome editing inP. patenswas shown to be more efficient than traditional homologous recombination (Plant Biotechnology Journal, 15, 2017, 122). CRISPR‐Cas9 provides the opportunity to efficiently edit the genome at multiple loci as well as integrate sequences at precise locations in the genome using a simple transient transformation. To fully take advantage of CRISPR‐Cas9 genome editing inP. patens, here we describe the generation and use of a flexible and modular CRISPR‐Cas9 vector system. Without the need for gene synthesis, this vector system enables editing of up to 12 loci simultaneously. Using this system, we generated multiple lines that had null alleles at four distant loci. We also found that targeting multiple sites within a single locus can produce larger deletions, but the success of this depends on individual protospacers. To take advantage of homology‐directed repair, we developed modular vectors to rapidly generate DNA donor plasmids to efficiently introduce DNA sequences encoding for fluorescent proteins at the 5′ and 3′ ends of gene coding regions. With regard to homology‐directed repair experiments, we found that if the protospacer sequence remains on the DNA donor plasmid, then Cas9 cleaves the plasmid target as well as the genomic target. This can reduce the efficiency of introducing sequences into the genome. Furthermore, to ensure the generation of a null allele near the Cas9 cleavage site, we generated a homology plasmid harboring a “stop codon cassette” with downstream near‐effortless genotyping.

    more » « less