skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chapman, K.D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rebeille, F.; Marechal, E. (Ed.)
    N-acylethanolamines (NAEs) are a group of lipid signaling molecules derived from the phospholipid precursor N-acylphosphatidylethanolamine (NAPE). NAEs can be processed by a wide range of metabolic processes including hydrolysis by fatty acid amide hydrolase (FAAH), peroxidation by lipoxygenases (LOX), and conjugation by glycosyl- and malonyl-transferases. The diversity of NAE metabolites points to participation in multiple downstream pathways for regulation and function. NAEs with acyl chains of 18C are typically the most predominant types in vascular plants. Whereas in nonvascular plants and some algae, the arachidonic acid-containing NAE, anandamide (a functional “endocannabinoid” in animal systems), was recently reported. A signaling role for anandamide and other NAEs is well established in vertebrates, while NAEs and their oxylipin metabolites are recently becoming appreciated for lipid mediator roles in vascular plants. Here, the NAE metabolism and function in plants are overviewed, with particular emphasis on processes described in vascular plants where most attention has been focused. 
    more » « less