skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chapman, Samantha K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Global change is expected to modify the magnitude and trajectory of organic matter decomposition in mangrove ecosystems. Yet, the degree and direction of that change is unknown, especially considering the large C storage potential that mangroves provide. We performed a systematic review of primary literature to examine the relationships between genus‐specific litter quality, latitude or other global change proxies and decomposition of mangrove litter fractions.

    Location

    Global.

    Time Period

    1976–2021.

    Taxon

    Mangroves.

    Methods

    We compiled a dataset of 480 decomposition rates, including species, litter fraction, latitude, and relevant biophysical data. We investigated the influence of genera, tissue type, latitude, and global change proxies on decomposition rates using linear models and qualitative approaches. We also performed calculations to determine the potential importance of the decomposition process on the root litter biomass C pool in the context of blue C significance.

    Results

    Collectively, latitudinal relationships suggest that factors other than temperature, such as tissue type and genus, may regulate decay rates within mangroves' distributional range. Decay rates of leaf litter, roots, and wood converged on a value of 0.009 ± 0.0005, 0.002 ± 0.0001, and 0.001 ± 0.0003, respectively, across continents and geomorphological settings. Our calculations suggest that small changes in decomposition rate will not elicit large changes in blue C storage potential.

    Conclusions

    The main drivers behind variability in mangrove biomass decay rates detected across the distributional range remain uncertain. However, the small latitudinal range that mangroves inhabit and the submerged environment within which litter decomposes suggest that decay depends on species‐specific responses or biotic interactions among species to global change drivers. Few studies have examined global change impacts directly, and variability in decay and lack of representation of some mangrove groups in the literature suggest that implications for blue C are important to consider.

     
    more » « less
  2. Free, publicly-accessible full text available January 1, 2024
  3. Free, publicly-accessible full text available January 1, 2024
  4. Abstract

    Mangrove trees are invading saltmarshes at subtropical ecotones globally, but the consequences of this vegetation shift for ecosystem sustainability remain unknown. Using the Coastal Wetland Equilibrium Model (CWEM) to simulate vegetation survival and sediment accretion, we predict that black mangroves,Avicennia germinans, can build soil elevation by 8 mm yr−1, four times greater than saltmarshes at the same site, a finding that is broadly consistent with field measurements of elevation change. Mangroves build elevation more rapidly than saltmarshes by producing much greater live and labile belowground biomass, but when mangroves drown, they abruptly lose elevation due to the large volume of quickly decomposing necromass following flood‐induced mortality. Under certain conditions, young mangroves can accumulate root mass faster than mature trees and, therefore, gain elevation more rapidly, but neither saltmarshes nor mangroves of any age survived a centenary sea‐level increase of 100 cm. The acceleration of sea‐level rise that coastal marshes are encountering raises the question of how coastal wetlands should be optimally managed and these results provide managers with predictive information on wetland building capacity of mangroves versus marshes.

     
    more » « less
  5. null (Ed.)