skip to main content

Search for: All records

Creators/Authors contains: "Chard, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Personal cloud storage systems increasingly offer recommendations to help users retrieve or manage files of interest. For example, Google Drive's Quick Access predicts and surfaces files likely to be accessed. However, when multiple, related recommendations are made, interfaces typically present recommended files and any accompanying explanations individually, burdening users. To improve the usability of ML-driven personal information management systems, we propose a new method for summarizing related file-management recommendations. We generate succinct summaries of groups of related files being recommended. Summaries reference the files' shared characteristics. Through a within-subjects online study in which participants received recommendations for groups of files in their own Google Drive, we compare our summaries to baselines like visualizing a decision tree model or simply listing the files in a group. Compared to the baselines, participants expressed greater understanding and confidence in accepting recommendations when shown our novel recommendation summaries.
    Free, publicly-accessible full text available October 28, 2023
  3. Free, publicly-accessible full text available December 1, 2023
  4. Free, publicly-accessible full text available October 1, 2023
  5. Free, publicly-accessible full text available December 1, 2023
  6. Abstract

    A concise and measurable set of FAIR (Findable, Accessible, Interoperable and Reusable) principles for scientific data is transforming the state-of-practice for data management and stewardship, supporting and enabling discovery and innovation. Learning from this initiative, and acknowledging the impact of artificial intelligence (AI) in the practice of science and engineering, we introduce a set of practical, concise, and measurable FAIR principles for AI models. We showcase how to create and share FAIR data and AI models within a unified computational framework combining the following elements: the Advanced Photon Source at Argonne National Laboratory, the Materials Data Facility, the Data and Learning Hub for Science, and funcX, and the Argonne Leadership Computing Facility (ALCF), in particular the ThetaGPU supercomputer and the SambaNova DataScale®system at the ALCF AI Testbed. We describe how this domain-agnostic computational framework may be harnessed to enable autonomous AI-driven discovery.

  7. Free, publicly-accessible full text available October 1, 2023
  8. Vast volumes of data are produced by today’s scientific simulations and advanced instruments. These data cannot be stored and transferred efficiently because of limited I/O bandwidth, network speed, and storage capacity. Error-bounded lossy compression can be an effective method for addressing these issues: not only can it significantly reduce data size, but it can also control the data distortion based on user-defined error bounds. In practice, many scientific applications have specific requirements or constraints for lossy compression, in order to guarantee that the reconstructed data are valid for post hoc analysis. For example, some datasets contain irrelevant data that should be isolated in particular and users often have intuition regarding value ranges, geospatial regions, and other data subsets that are crucial for subsequent analysis. Existing state-of-the-art error-bounded lossy compressors, however, do not consider these constraints during compression, resulting in inferior compression ratios with respect to user’s post hoc analysis, due to the fact that the data itself provides little or no value for post hoc analysis. In this work we address this issue by proposing an optimized framework that can preserve diverse constraints during the error-bounded lossy compression, e.g., cleaning the irrelevant data, efficiently preserving different precision for multiple valuemore »intervals, and allowing users to set diverse precision over both regular and irregular regions. We perform our evaluation on a supercomputer with up to 2,100 cores. Experiments with six real-world applications show that our proposed diverse constraints based error-bounded lossy compressor can obtain a higher visual quality or data fidelity on reconstructed data with the same or even higher compression ratios compared with the traditional state-of-the-art compressor SZ. Our experiments also demonstrate very good scalability in compression performance compared with the I/O throughput of the parallel file system.« less
    Free, publicly-accessible full text available July 1, 2023
  9. Users running dynamic workflows in distributed systems usually have inadequate expertise to correctly size the allocation of resources (cores, memory, disk) to each task due to the difficulty in uncovering the obscure yet important correlation between tasks and their resource consumption. Thus, users typically pay little attention to this problem of allocation sizing and either simply apply an error-prone upper bound of resource allocation to all tasks, or delegate this responsibility to underlying distributed systems, resulting in substantial waste from allocated yet unused resources. In this paper, we will first show that tasks performing different work may have significantly different resource consumption. We will then show that exploiting the heterogeneity of tasks is a desirable way to reveal and predict the relationship between tasks and their resource consumption, reduce waste from resource misallocation, increase tasks' consumption efficiency, and incentivize users' cooperation. We have developed two info-aware allocation strategies capitalizing on this characteristic and will show their effectiveness through simulations on two modern applications with dynamic workflows and five synthetic datasets of resource consumption. Our results show that info-aware strategies can cut down up to 98.7% of the total waste incurred by a best-effort strategy, and increase the efficiency in resourcemore »consumption of each task on average anywhere up to 93.9%.« less
  10. Enabling efficient fine-grained task parallelism is a significant challenge for hardware platforms with increasingly many cores. Existing techniques do not scale to hundreds of threads due to the high cost of synchronization in concurrent data structures. To overcome these limitations we present XQueue, a novel lock-less concurrent queuing system with relaxed ordering semantics that is geared towards realizing scalability up to hundreds of concurrent threads. We demonstrate the scalability of XQueue using microbenchmarks and show that XQueue can deliver concurrent operations with latencies as low as 110 cycles at scales of up to 192 cores (up to 6900× improvement compared to traditional synchronization mechanisms) across our diverse hardware, including x86, ARM, and Power9. The reduced latency allows XQueue to provide orders of magnitude (3300×) better throughput that existing techniques. To evaluate the real-world benefits of XQueue, we integrated XQueue with LLVM OpenMP and evaluated five unmodified benchmarks from the Barcelona OpenMP Task Suite (BOTS) as well as a graph traversal benchmark from the GAP benchmark suite. We compared the XQueue-enabled LLVM OpenMP implementation with the native LLVM and GNU OpenMP versions. Using fine-grained task workloads, XQueue can deliver 4× to 6× speedup compared to native GNU OpenMP and LLVM OpenMPmore »in many cases, with speedups as high as 116× in some cases.« less