Supra‐permafrost submarine groundwater discharge (SGD) in the Arctic is potentially important for coastal biogeochemistry and will likely increase over the coming decades owing to climate change. Despite this, land‐to‐ocean material fluxes via SGD in Arctic environments have seldom been quantified. This study used radium (Ra) isotopes to quantify SGD fluxes to an Arctic coastal lagoon (Simpson Lagoon, Alaska) during five sampling periods between 2021 and 2023. Using a Ra mass balance model, we found that the SGD water flux was substantial and dependent on environmental conditions. No measurable SGD was detected during the spring sampling period (June 2022), when the lagoon was partially ice‐covered. During ice‐free periods, the main driver of SGD in this location is wind‐driven lagoon water level changes, not tides, which control surface water recirculation through sediments along the lagoon boundary. A combination of wind strength and direction led to low SGD fluxes in July 2022, with an SGD flux of (6 ± 3) × 106 m3 d−1, moderate fluxes in August 2021 and July 2023, which had an average flux of (17 ± 9) × 106 m3 d−1, and high fluxes in October 2022, at (79 ± 16) × 106 m3 d−1. This work demonstrates how soil and environmental conditions in the Arctic impact Ra mobilization, laying a foundation for future SGD studies in the Arctic and shedding light on the major processes driving Ra fluxes in this important environment.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available June 1, 2025 -
Abstract Radium‐226(226Ra) and barium (Ba) exhibit similar chemical behaviors and distributions in the marine environment, serving as valuable tracers of water masses, ocean mixing, and productivity. Despite their similar distributions, these elements originate from distinct sources and undergo disparate biogeochemical cycles, which might complicate the use of these tracers. In this study, we investigate these processes by analyzing a full‐depth ocean section of226Ra activities (
T 1/2 = 1,600 years) and barium concentrations obtained from samples collected along the US GEOTRACES GP15 Pacific Meridional Transect during September–November 2018, spanning from Alaska to Tahiti. We find that surface waters possess low levels of226Ra and Ba due to export of sinking particulates, surpassing inputs from the continental margins. In contrast, deep waters have higher226Ra activities and Ba concentrations due to inputs from particle regeneration and sedimentary sources, with226Ra inputs primarily resulting from the decay of230Th in sediments. Further, dissolved226Ra and Ba exhibit a strong correlation along the GP15 section. To elucidate the drivers of the correlation, we used a water mass analysis, enabling us to quantify the influence of water mass mixing relative to non‐conservative processes. While a significant fraction of each element's distribution can be explained by conservative mixing, a considerable fraction cannot. The balance is driven using non‐conservative processes, such as sedimentary, rivers, or hydrothermal inputs, uptake and export by particles, and particle remineralization. Our study demonstrates the utility of226Ra and Ba as valuable biogeochemical tracers for understanding ocean processes, while shedding light on conservative and myriad non‐conservative processes that shape their respective distributions.Free, publicly-accessible full text available June 1, 2025 -
Water column dissolved radium-226 and radium-228 from Leg 2 (Hilo, HI to Papeete, French Polynesia) of the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15, RR1815) on R/V Roger Revelle from October to November 2018. In this dataset version (v3), the radium-226 data have been updated from the previous version of the dataset.more » « less
-
Water column dissolved radium-226 and radium-228 from Leg 1 (Seattle, WA to Hilo, HI) of the US GEOTRACES Pacific Meridional Transect (PMT) cruise (GP15, RR1814) on R/V Roger Revelle from September to October 2018. In this dataset version (v3), the radium-226 data have been updated from the previous version of the dataset.more » « less
-
null (Ed.)Abstract Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models.more » « less