Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The influence of Al substitution on the elastic properties of stishovite and its transition to post-stishovite is of great importance for interpreting the seismic wave velocities of subducted mid-ocean ridge basalt (MORB) within the mantle transition zone and the lower mantle. However, atomistic mechanisms of Al substitution effects on the transition and its associated elasticity remain debated. Here synchrotron single-crystal X-ray diffraction measurements have been performed at room temperature on Al1.3-SiO2 (1.3 mol% Al in the chemical formula of Si0.965(3)Al0.041(1)O2H0.017(4)) and Al2.1-SiO2 (2.1 mol% Al in Si0.948(2)Al0.064(1)O2H 0.018(3)) crystals in diamond anvil cells with Boehler-Almax designed anvils up to 38.0 GPa and 28.5 GPa, respectively. Refinements of the diffraction patterns show that a transformation from stishovite (space group P42/mnm; No. 136) to CaCl2-typed post-stishovite (space group Pnnm; No. 58) is accompanied by splitting of O coordinates. The Al substitution in stishovite results in a faster decrease in the O coordinate, softer apical (Si,Al)-O bonds, and a softer and less distorted (Si,Al)O6 octahedron under compression. This leads to reduced adiabatic bulk modulus (KS), shear modulus (G), shear wave velocity (VS), and compressional wave velocity (VP) in the stishovite phase, explaining seismic wave perturbations in the mantle transition zone. Together with Raman data, Landau theory modeling shows that Al substitution increases the order parameter and excess free energy, stabilizing the post-stishovite phase at lower pressures. Correlation between elasticity and octahedral distortion index (D) reveals that at certain D, the Al substitution reduces KS, G, VS, and VP of the stishovite phase while increasing G, VS, and VP of the post-stishovite phase. Importantly, the maximum shear reduction is slightly enhanced at D = 0.00620(9) at the transition point. Our results help explain the seismically observed small-scale VS anomalies beneath subduction regions in the shallow lower mantle where Al,H-bearing stishovite undergoes the post-stishovite transition.more » « lessFree, publicly-accessible full text available October 24, 2025
-
Free, publicly-accessible full text available March 18, 2026
-
Abstract Germanates are often used as structural analogs of planetary silicates. We have explored the high-pressure phase relations in Mg2GeO4 using diamond-anvil cell experiments combined with synchrotron X-ray diffraction and computations based on density functional theory. Upon room temperature compression, forsterite-type Mg2GeO4 remains stable up to 30 GPa. At higher pressures, a phase transition to a forsterite-III type (Cmc21) structure was observed, which remained stable to the peak pressure of 105 GPa. Using a third-order Birch Murnaghan fit to the experimental data, we obtained V0 = 305.1(3) Å3, K0 = 124.6(14) GPa, and K0′ = 3.86 (fixed) for forsterite-type Mg2GeO4 and V0 = 263.5(15) Å3, K0 = 175(7) GPa, and K0′ = 4.2 (fixed) for the forsterite-III type phase. The forsterite-III type structure was found to be metastable when compared to the stable assemblage of perovskite/post-perovskite + MgO, as observed during laser-heating experiments. Understanding the phase relations and physical properties of metastable phases is crucial for studying the mineralogy of impact sites, understanding metastable wedges in subducting slabs, and interpreting the results of shock compression experiments.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract With the advent of toroidal and double-stage diamond anvil cells (DACs), pressures between 4 and 10 Mbar can be achieved under static compression, however, the ability to explore diverse sample assemblies is limited on these micron-scale anvils. Adapting the toroidal DAC to support larger sample volumes offers expanded capabilities in physics, chemistry, and planetary science: including, characterizing materials in soft pressure media to multi-megabar pressures, synthesizing novel phases, and probing planetary assemblages at the interior pressures and temperatures of super-Earths and sub-Neptunes. Here we have continued the exploration of larger toroidal DAC profiles by iteratively testing various torus and shoulder depths with central culet diameters in the 30–50 µm range. We present a 30 µm culet profile that reached a maximum pressure of 414(1) GPa based on a Pt scale. The 300 K equations of state fit to ourP–Vdata collected on gold and rhenium are compatible with extrapolated hydrostatic equations of state within 1% up to 4 Mbar. This work validates the performance of these large-culet toroidal anvils to > 4 Mbar and provides a promising foundation to develop toroidal DACs for diverse sample loading and laser heating.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Davemaoite (CaSiO3 perovskite) is considered the third most abundant phase in the pyrolytic lower mantle and the second most abundant phase in the subducted mid-ocean ridge basalt (MORB). During the partial melting of the pyrolytic upper mantle, incompatible titanium (Ti) becomes enriched in the basaltic magma, forming Ti-rich MORB. Davemaoite is considered an important Ti-bearing mineral in subducted slabs by forming a Ca(Si,Ti)O3 solid solution. However, the crystal structure and compressibility of Ca(Si,Ti)O3 perovskite solid solution at relevant pressure and temperature conditions had not been systematically investigated. In this study, we investigated the structure and equations of state of Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites at room temperature up to 82 and 64 GPa, respectively, by synchrotron X-ray diffraction (XRD). We found that both Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites have a tetragonal structure up to the maximum pressures investigated. Based on the observed data and compared to pure CaSiO3 davemaoite, both Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites are expected to be less dense up to the core-mantle boundary (CMB), and specifically ~1–2% less dense than CaSiO3 davemaoite in the pressure range of the transition zone (15–25 GPa). Our results suggest that the presence of Ti-bearing davemaoite phases may result in a reduction in the average density of the subducting slabs, which in turn promotes their stagnation in the lower mantle. The presence of low-density Ti-bearing davemaoite phases and subduction of MORB in the lower mantle may also explain the seismic heterogeneity in the lower mantle, such as large low shear velocity provinces (LLSVPs).more » « lessFree, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available September 1, 2025
-
Thorite: An Oddity in Phase Stability Amongst the Zircon-Structured Orthosilicates at High PressuresAbstract Synthetic thorite and huttonite, two polymorphs of ThSiO4, were investigated by a combination of in situ high-pressure synchrotron X-ray powder diffraction and in situ high pressure Raman spectroscopy. The average onset pressure of the thorite-to-huttonite transition was determined to be 6.6 ± 0.2 GPa, using both techniques. The bulk moduli of thorite and huttonite were determined to be 139(9) and 246(11) GPa, respectively, by fitting their unit-cell volume data to a second order Birch-Murnaghan equation of state (EOS). Based on its bulk modulus, thorite is the most compressible zircon-structured orthosilicate, as it has the largest unit cell volume among tetravalent metal orthosilicates. The pressure derivatives of the vibrational modes of thorite were found to be consistent with those previously reported for other orthosilicates (e.g., zircon, hafnon, stetindite, and coffinite), while having the smallest Grüneisen parameter. A new P-T phase diagram for ThSiO4 is proposed, where the boundary of the thorite → huttonite transition is: P(T) = (7.8 ± 0.9 GPa) − (0.006 ± 0.002 GPa/K)T. Based on the new P-T phase diagram, we further estimated the enthalpy of formation of huttonite, ΔHf,ox, to be 0.6 ± 6.0 kJ/mol, suggesting its metastability and rare locality in nature.more » « lessFree, publicly-accessible full text available January 17, 2026
-
Single-crystal X-ray diffraction on the structure of (Al,Fe)-bearing bridgmanite in the lower mantleAbstract Here we have performed single-crystal X-ray diffraction (SCXRD) experiments on two high-quality crystal platelets of (Al,Fe)-bearing bridgmanite (Mg0.88Fe0.0653+Fe0.0352+Al0.03)(Al0.11Si0.90)O3 (Fe10-Al14-Bgm) up to 64.6(6) GPa at room temperature in a Boehler-Almax type diamond-anvil cell. Refinements on the collected SCXRD patterns reveal reliable structural information of single-crystal Fe10-Al14-Bgm, including unit-cell parameters, atomic coordinates, and anisotropic displacement parameters. Together with Mössbauer and electron microprobe analyses, our best single-crystal refinement model indicates that the sample contains ~6.5 mol% Fe3+, 3.5 mol% Fe2+, and 3 mol% Al3+ in the large pseudo-dodecahedral site (A site), and ~11 mol% Al3+ in the small octahedral site (B site). This may indicate that Al3+ in bridgmanite preferentially occupies the B site. Our results show that the compression of Fe10-Al14-Bgm with pressure causes monotonical decreases in the volumes of AO12 pseudo-dodecahedron and BO6 octahedron (VA and VB, respectively) as well as the associated A-O and B-O bond lengths. The interatomic angles of B-O1-B and B-O2-B decrease from 145.2–145.8° at 4.2(1) GPa to 143.3–143.5° at 64.6(6) GPa. Quantitative calculations of octahedral tilting angles (Ф) show that Ф increases smoothly with pressure. We found a linear relationship between the polyhedral volume ratio and the Ф in the bridgmanite with different compositions: VA/VB = –0.049Φ + 5.549. Our results indicate an increased distortion of the Fe10-Al14-Bgm structure with pressure, which might be related to the distortion of A-site Fe2+. The local environmental changes of A-site Fe2+ in bridgmanite could explain previous results on the hyperfine parameters, abnormal lattice thermal conductivity, mean force constant of iron bonds and other physical properties, which in turn provide insights into our understanding on the geophysics and geochemistry of the planet.more » « less
-
Free, publicly-accessible full text available September 1, 2025