Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We investigated the relationship between individual-level social vulnerability and place of death during the infectious disease emergency of the COVID-19 pandemic in Massachusetts. Our research represents a unique contribution by matching individual-level death certificates with COVID-19 test data to analyse differences in distributions of place of death.more » « less
-
Marcelo, Alvin (Ed.)BackgroundIn light of recent retrospective studies revealing evidence of disparities in access to medical technology and of bias in measurements, this narrative review assesses digital determinants of health (DDoH) in both technologies and medical formulae that demonstrate either evidence of bias or suboptimal performance, identifies potential mechanisms behind such bias, and proposes potential methods or avenues that can guide future efforts to address these disparities. ApproachMechanisms are broadly grouped intophysical and biological biases(e.g., pulse oximetry, non-contact infrared thermometry [NCIT]),interaction of human factors and cultural practices(e.g., electroencephalography [EEG]), andinterpretation bias(e.g, pulmonary function tests [PFT], optical coherence tomography [OCT], and Humphrey visual field [HVF] testing). This review scope specifically excludes technologies incorporating artificial intelligence and machine learning. For each technology, we identify both clinical and research recommendations. ConclusionsMany of the DDoH mechanisms encountered in medical technologies and formulae result in lower accuracy or lower validity when applied to patients outside the initial scope of development or validation. Our clinical recommendations caution clinical users in completely trusting result validity and suggest correlating with other measurement modalities robust to the DDoH mechanism (e.g., arterial blood gas for pulse oximetry, core temperatures for NCIT). Our research recommendations suggest not only increasing diversity in development and validation, but also awareness in the modalities of diversity required (e.g., skin pigmentation for pulse oximetry but skin pigmentation and sex/hormonal variation for NCIT). By increasing diversity that better reflects patients in all scenarios of use, we can mitigate DDoH mechanisms and increase trust and validity in clinical practice and research.more » « less
-
BackgroundThroughout the COVID-19 pandemic, US Centers for Disease Control and Prevention policies on face mask use fluctuated. Understanding how public health communications evolve around key policy decisions may inform future decisions on preventative measures by aiding the design of communication strategies (eg, wording, timing, and channel) that ensure rapid dissemination and maximize both widespread adoption and sustained adherence. ObjectiveWe aimed to assess how sentiment on masks evolved surrounding 2 changes to mask guidelines: (1) the recommendation for mask use on April 3, 2020, and (2) the relaxation of mask use on May 13, 2021. MethodsWe applied an interrupted time series method to US Twitter data surrounding each guideline change. Outcomes were changes in the (1) proportion of positive, negative, and neutral tweets and (2) number of words within a tweet tagged with a given emotion (eg, trust). Results were compared to COVID-19 Twitter data without mask keywords for the same period. ResultsThere were fewer neutral mask-related tweets in 2020 (β=–3.94 percentage points, 95% CI –4.68 to –3.21; P<.001) and 2021 (β=–8.74, 95% CI –9.31 to –8.17; P<.001). Following the April 3 recommendation (β=.51, 95% CI .43-.59; P<.001) and May 13 relaxation (β=3.43, 95% CI 1.61-5.26; P<.001), the percent of negative mask-related tweets increased. The quantity of trust-related terms decreased following the policy change on April 3 (β=–.004, 95% CI –.004 to –.003; P<.001) and May 13 (β=–.001, 95% CI –.002 to 0; P=.008). ConclusionsThe US Twitter population responded negatively and with less trust following guideline shifts related to masking, regardless of whether the guidelines recommended or relaxed mask usage. Federal agencies should ensure that changes in public health recommendations are communicated concisely and rapidly.more » « less
An official website of the United States government

Full Text Available