skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chase, Alexander B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. null (Ed.)
  3. Abstract Microorganisms are the primary engines of biogeochemical processes and foundational to the provisioning of ecosystem services to human society. Free‐living microbial communities (microbiomes) and their functioning are now known to be highly sensitive to environmental change. Given microorganisms' capacity for rapid evolution, evolutionary processes could play a role in this response. Currently, however, few models of biogeochemical processes explicitly consider how microbial evolution will affect biogeochemical responses to environmental change. Here, we propose a conceptual framework for explicitly integrating evolution into microbiome–functioning relationships. We consider how microbiomes respond simultaneously to environmental change via four interrelated processes that affect overall microbiome functioning (physiological acclimation, demography, dispersal and evolution). Recent evidence in both the laboratory and the field suggests that ecological and evolutionary dynamics occur simultaneously within microbiomes; however, the implications for biogeochemistry under environmental change will depend on the timescales over which these processes contribute to a microbiome's response. Over the long term, evolution may play an increasingly important role for microbially driven biogeochemical responses to environmental change, particularly to conditions without recent historical precedent. 
    more » « less
  4. null (Ed.)