skip to main content


Search for: All records

Creators/Authors contains: "Chau, Duen Horng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Estimating soil properties from the mechanical reaction to a displacement is a common strategy, used not only in in situ soil characterization (e.g., pressuremeter and dilatometer tests) but also by biological organisms (e.g., roots, earthworms, razor clams), which sense stresses to explore the subsurface. Still, the absence of analytical solutions to predict the stress and deformation fields around cavities subject to geostatic stress, has prevented the development of characterization methods that resemble the strategies adopted by nature. We use the finite element method (FEM) to model the displacement-controlled expansion of cavities under a wide range of stress conditions and soil properties. The radial stress distribution at the cavity wall during expansion is extracted. Then, methods are proposed to prepare, transform and use such stress distributions to back-calculate the far field stresses and the mechanical parameters of the material around the cavity (Mohr-Coulomb friction angle$$\phi $$ϕ, Young’s modulusE). Results show that: (i) The initial stress distribution around the cavity can be fitted to a sum of cosines to estimate the far field stresses; (ii) By encoding the stress distribution as intensity images, in addition to certain scalar parameters, convolutional neural networks can consistently and accurately back-calculate the friction angle and Young’s modulus of the soil.

     
    more » « less
  2. Kitamura, Yoshifumi ; Quigley, Aaron ; Isbister, Katherine ; Igarashi, Takeo (Ed.)
    The advent of larger machine learning (ML) models have improved state-of-the-art (SOTA) performance in various modeling tasks, ranging from computer vision to natural language. As ML models continue increasing in size, so does their respective energy consumption and computational requirements. However, the methods for tracking, reporting, and comparing energy consumption remain limited. We present EnergyVis, an interactive energy consumption tracker for ML models. Consisting of multiple coordinated views, EnergyVis enables researchers to interactively track, visualize and compare model energy consumption across key energy consumption and carbon footprint metrics (kWh and CO2), helping users explore alternative deployment locations and hardware that may reduce carbon footprints. EnergyVis aims to raise awareness concerning computational sustainability by interactively highlighting excessive energy usage during model training; and by providing alternative training options to reduce energy usage. 
    more » « less
  3. As deep neural networks are increasingly used in solving highstake problems, there is a pressing need to understand their internal decision mechanisms. Visualization has helped address this problem by assisting with interpreting complex deep neural networks. However, current tools often support only single data instances, or visualize layers in isolation. We present NEURALDIVERGENCE, an interactive visualization system that uses activation distributions as a high-level summary of what a model has learned. NEURALDIVERGENCE enables users to interactively summarize and compare activation distributions across layers, classes, and instances (e.g., pairs of adversarial attacked and benign images), helping them gain better understanding of neural network models. 
    more » « less