skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chaudhuri, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. We report the simulation of an adaptive interferometric null test using a high-definition phase-only spatial light modulator (SLM) to measure form and mid spatial frequencies of a freeform mirror with a sag departure of 150 μm from its base sphere. A state-of-the-art commercial SLM is modeled as a reconfigurable phase computer generated hologram (CGH) that generates a nulling phase function with close to an order of magnitude higher amplitude than deformable mirrors. The theoretical uncertainty in form measurement arising from pixelation and phase quantization of the SLM is 50.62 nm RMS. The calibration requirements for hardware implementation are detailed. © 2019 Optical Society of America https://doi.org/10.1364/OL.44.002000 
    more » « less
  3. Freeform optical surfaces offer significant design opportunities but pose new challenges in metrology and manufacturing. Evolution in optics manufacturing processes have changed the surface spatial frequencies that must be measured. Optical surface definition is expected to be with respect to fiducials and datums which must be realizable at all stages of manufacture; uncertainty in that realization becomes important in some cases. Concurrent engineering is required, but appropriate data has not been collated for use by optical designers. One approach to providing such data is described. 
    more » « less