skip to main content


Search for: All records

Creators/Authors contains: "Chavez, Francisco P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Eastern boundary upwelling systems (EBUS) contribute a disproportionatefraction of the global fish catch relative to their size and are especiallysusceptible to global environmental change. Here we present the evolution ofcommunities over 50 d in an in situ mesocosm 6 km offshore of Callao, Peru, andin the nearby unenclosed coastal Pacific Ocean. The communities weremonitored using multi-marker environmental DNA (eDNA) metabarcoding and flowcytometry. DNA extracted from weekly water samples were subjected toamplicon sequencing for four genetic loci: (1) the V1–V2 region of the 16SrRNA gene for photosynthetic eukaryotes (via their chloroplasts) andbacteria; (2) the V9 region of the 18S rRNA gene for exploration ofeukaryotes but targeting phytoplankton; (3) cytochrome oxidase I (COI) forexploration of eukaryotic taxa but targeting invertebrates; and (4) the 12SrRNA gene, targeting vertebrates. The multi-marker approach showed adivergence of communities (from microbes to fish) between the mesocosm andthe unenclosed ocean. Together with the environmental information, thegenetic data furthered our mechanistic understanding of the processes thatare shaping EBUS communities in a changing ocean. The unenclosed oceanexperienced significant variability over the course of the 50 d experiment,with temporal shifts in community composition, but remained dominated byorganisms that are characteristic of high-nutrient upwelling conditions(e.g., diatoms, copepods, anchovies). A large directional change was found inthe mesocosm community. The mesocosm community that developed wascharacteristic of upwelling regions when upwelling relaxes and watersstratify (e.g., dinoflagellates, nanoflagellates). The selection ofdinoflagellates under the salinity-driven experimentally stratifiedconditions in the mesocosm, as well as the warm conditions brought about bythe coastal El Niño, may be an indication of how EBUS will respond underthe global environmental changes (i.e., increases in surface temperature andfreshwater input, leading to increased stratification) forecast by the IPCC. 
    more » « less
  2. Abstract

    Photosynthesis in the surface ocean converts atmospheric CO2into organic particles, with the fraction sinking to depth representing a major part of the ocean's biological pump. Although sinking particles are known to be altered by attached‐bacteria during transit, most prior organic geochemical data indicated only minor replacement of plankton‐derived particles by bacterial material. We exploit bacteria‐specific biomarkers (d‐amino acids) in a multi‐year sediment trap in the Pacific Ocean (1,200 m) and suggest a different view. Majord‐amino acids were consistently measured at abundance demonstrating widespread accumulation of bacterial material in sinking particles. Bacterial detritus was estimated to account for up to 19% of particulate organic carbon and up to 36% of particulate nitrogen, much higher than cell count‐based values. The bacterial relative contribution increased with decreasing export production. Our results indicate that bacterial material constitutes an underappreciated component of the biological pump, a role expected to rise as the ocean warms.

     
    more » « less
  3. Abstract

    Current information on the status and trends of ocean change is needed to support effective and responsive management, particularly for the deep ocean. Creating consistent, collaborative and actionable mechanisms is a key component of the Deep Ocean Observing Strategy, a program of the United Nations Decade of Ocean Science for Sustainable Development. Here, we share an iterative, agile, and human-centred approach to co-designing datastreams for deep-sea indicators that serves stakeholders, including US National Marine Sanctuaries, presented as a four-phase project roadmap initially focused on the Monterey Bay National Marine Sanctuary, and then generalized to other areas such as the US West Coast, offshore wind development areas, and managed marine spaces globally. Ongoing efforts to provide key physical, biogeochemical, biological, and ecosystem variables for California's Marine Protected Areas are informing this co-design process. We share lessons learned so far and present co-design as a useful tool for (1) assessing the availability of information from deep ecosystems, (2) ensuring interoperability, and (3) providing essential information on the status and trends of indicators. Documenting and sharing this co-design strategy and scalable four-phase roadmap will further the aims of DOOS and other initiatives, including the Deep Ocean Stewardship Initiative and Challenger 150.

     
    more » « less
  4. Abstract

    Omic BON is a thematic Biodiversity Observation Network under the Group on Earth Observations Biodiversity Observation Network (GEO BON), focused on coordinating the observation of biomolecules in organisms and the environment. Our founding partners include representatives from national, regional, and global observing systems; standards organizations; and data and sample management infrastructures. By coordinating observing strategies, methods, and data flows, Omic BON will facilitate the co-creation of a global omics meta-observatory to generate actionable knowledge. Here, we present key elements of Omic BON's founding charter and first activities.

     
    more » « less
  5. Abstract

    Biodiversity is changing at an accelerating rate at both local and regional scales. Beta diversity, which quantifies species turnover between these two scales, is emerging as a key driver of ecosystem function that can inform spatial conservation. Yet measuring biodiversity remains a major challenge, especially in aquatic ecosystems. Decoding environmental DNA (eDNA) left behind by organisms offers the possibility of detecting species sans direct observation, a Rosetta Stone for biodiversity. While eDNA has proven useful to illuminate diversity in aquatic ecosystems, its utility for measuring beta diversity over spatial scales small enough to be relevant to conservation purposes is poorly known. Here we tested how eDNA performs relative to underwater visual census (UVC) to evaluate beta diversity of marine communities. We paired UVC with 12S eDNA metabarcoding and used a spatially structured hierarchical sampling design to assess key spatial metrics of fish communities on temperate rocky reefs in southern California. eDNA provided a more-detailed picture of the main sources of spatial variation in both taxonomic richness and community turnover, which primarily arose due to strong species filtering within and among rocky reefs. As expected, eDNA detected more taxa at the regional scale (69 vs. 38) which accumulated quickly with space and plateaued at only ~ 11 samples. Conversely, the discovery rate of new taxa was slower with no sign of saturation for UVC. Based on historical records in the region (2000–2018) we found that 6.9 times more UVC samples would be required to detect 50 taxa compared to eDNA. Our results show that eDNA metabarcoding can outperform diver counts to capture the spatial patterns in biodiversity at fine scales with less field effort and more power than traditional methods, supporting the notion that eDNA is a critical scientific tool for detecting biodiversity changes in aquatic ecosystems.

     
    more » « less
  6. null (Ed.)
  7. Abstract

    Ecological factors contributing to depth-related diversification of marine Thaumarchaeota populations remain largely unresolved. To investigate the role of potential microbial associations in shaping thaumarchaeal ecotype diversification, we examined co-occurrence relationships in a community composition dataset (16S rRNA V4-V5 region) collected as part of a 2-year time series in coastal Monterey Bay. Ecotype groups previously defined based on functional gene diversity—water column A (WCA), water column B (WCB) and Nitrosopumilus-like clusters—were recovered in the thaumarchaeal 16S rRNA gene phylogeny. Networks systematically reflected depth-related patterns in the abundances of ecotype populations, suggesting thaumarchaeal ecotypes as keystone members of the microbial community below the euphotic zone. Differential environmental controls on the ecotype populations were further evident in subnetwork modules showing preferential co-occurrence of OTUs belonging to the same ecotype cluster. Correlated abundances of Thaumarchaeota and heterotrophic bacteria (e.g., Bacteroidetes, Marinimicrobia and Gammaproteobacteria) indicated potential reciprocal interactions via dissolved organic matter transformations. Notably, the networks recovered ecotype-specific associations between thaumarchaeal and Nitrospina OTUs. Even at depths where WCB-like Thaumarchaeota dominated, Nitrospina OTUs were found to preferentially co-occur with WCA-like and Nitrosopumilus-like thaumarchaeal OTUs, highlighting the need to investigate the ecological implications of the composition of nitrifier assemblages in marine waters.

     
    more » « less
  8. Abstract. A global in situ data set for validation of ocean colour productsfrom the ESA Ocean Colour Climate Change Initiative (OC-CCI) is presented.This version of the compilation, starting in 1997, now extends to 2021,which is important for the validation of the most recent satellite opticalsensors such as Sentinel 3B OLCI and NOAA-20 VIIRS. The data set comprisesin situ observations of the following variables: spectral remote-sensingreflectance, concentration of chlorophyll-a, spectral inherent opticalproperties, spectral diffuse attenuation coefficient, and total suspendedmatter. Data were obtained from multi-project archives acquired via openinternet services or from individual projects acquired directly from dataproviders. Methodologies were implemented for homogenization, qualitycontrol, and merging of all data. Minimal changes were made on the originaldata, other than conversion to a standard format, elimination of some points,after quality control and averaging of observations that were close in timeand space. The result is a merged table available in text format. Overall,the size of the data set grew with 148 432 rows, with each row representing aunique station in space and time (cf. 136 250 rows in previous version;Valente et al., 2019). Observations of remote-sensing reflectance increasedto 68 641 (cf. 59 781 in previous version; Valente et al., 2019). There wasalso a near tenfold increase in chlorophyll data since 2016. Metadata ofeach in situ measurement (original source, cruise or experiment, principalinvestigator) are included in the final table. By making the metadataavailable, provenance is better documented and it is also possible toanalyse each set of data separately. The compiled data are available athttps://doi.org/10.1594/PANGAEA.941318 (Valente et al., 2022). 
    more » « less
  9. Summary

    Ammonia‐oxidizing archaea (AOA) of the phylumThaumarchaeotaare key players in nutrient cycling, yet large gaps remain in our understanding of their ecology and metabolism. Despite multiple lines of evidence pointing to a central role for copper‐containing nitrite reductase (NirK) in AOA metabolism, the thaumarchaealnirKgene is rarely studied in the environment. In this study, we examine the diversity ofnirKin the marine pelagic environment, in light of previously described ecological patterns of pelagic thaumarchaeal populations. Phylogenetic analyses show thatnirKbetter resolves diversification patterns of marineThaumarchaeota, compared to the conventionally used marker geneamoA. Specifically, we demonstrate that the three major phylogenetic clusters of marinenirKcorrespond to the three ‘ecotype’ populations of pelagicThaumarchaeota. In this context, we further examine the relative distributions of the three variant groups in metagenomes and metatranscriptomes representing two depth profiles in coastal Monterey Bay. Our results reveal thatnirKeffectively tracks the dynamics of thaumarchaeal ecotype populations, particularly finer‐scale diversification patterns within major lineages. We also find evidence for multiple copies ofnirKper genome in a fraction of thaumarchaeal cells in the water column, which must be taken into account when using it as a molecular marker.

     
    more » « less