A simple and facile method was developed to fabricate functional bulk barium titanate (BaTiO3,
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract BT ) ceramics using the paste extrusion 3D printing technique. TheBT ceramic is a lead‐free ferroelectric material widely used for various applications in sensors, energy storage, and harvesting. There are several traditional methods (eg, tape casting) to process bulkBT ceramics but they have disadvantages such as difficult handing without shape deformation, demolding, complex geometric shapes, expansive molds, etc. In this research, we utilized the paste extrusion 3D printing technique to overcome the traditional issues and developed printable ceramic suspensions containingBT ceramic powder, polyvinylidene fluoride (PVDF ), N,N‐dimethylformamide (DMF ) through simple mixing method and chemical formulation. ThisPVDF solution erformed multiple roles of binder, plasticizer, and dispersant for excellent manufacturability while providing high volume percent and density of the final bulk ceramic. Based on empirical data, it was found that the maximum binder ratio with good viscosity and retention for desired geometry is 1:8.8, while the maximumBT content is 35.45 vol% (77.01 wt%) in order to achieve maximum density of 3.93 g/cm3(65.3%) for 3D printedBT ceramic. Among different sintering temperatures, it was observed that the sinteredBT ceramic at 1400°C had highest grain growth and tetragonality which affected high performing piezoelectric and dielectric properties, 200 pC/N and 4730 at 103 Hz respectively. This paste extrusion 3D printing technique and simple synthesis method for ceramic suspensions are expected to enable rapid massive production, customization, design flexibility of the bulk piezoelectric and dielectric devices for next generation technology. -
ABSTRACT An electric field‐assisted
in situ dispersion of multiwall carbon nanotubes (MWCNTs) in polymer nanocomposites, fabricated through stereolithography three‐dimensional (3D) printing technique, was demonstrated. The introduction of MWCNTs increased the elasticity modulus of the polymer resin by 77%. Furthermore, the use of an electric field forin situ MWCNT dispersion helped improving the average elongation at break of the samples with MWCNTs by 32%. The electric field also increased the ultimate tensile strength of the MWCNT reinforced nanocomposites by 42%. An increase of over 20% in the ultimate tensile strength ofin situ dispersed MWCNT nanocomposites over the pure polymer material was observed. Finally, it was demonstrated that the magnitude and direction of the electrical conductivity of MWCNT nanocomposites can be engineered through the application ofin situ electric fields during 3D printing. An increase of 50% in the electrical conductivity was observed when MWCNTs were introduced, while the application of the electric field further improved the electrical conductivity by 26%. The presented results demonstrated the feasibility of tuning both electrical and mechanical properties of MWCNT reinforced polymer nanocomposites usingin situ electrical field‐assisted 3D printing. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019 ,136 , 47600.