- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bicker, Forrest (1)
-
Che, Tiger (1)
-
Knell, Milo (1)
-
MontaƱez, George (1)
-
Rane, Sahil (1)
-
Wu, Alan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
Ana Paula Rocha, Luc Steels (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ana Paula Rocha, Luc Steels (Ed.)Many machine learning tasks have a measure of success that is naturally continuous, such as error under a loss function. We generalize the Algorithmic Search Framework (ASF), used for modeling machine learning domains as discrete search problems, to the continuous space. Moving from discrete target sets to a continuous measure of success extends the applicability of the ASF by allowing us to model fundamentally continuous notions like fuzzy membership. We generalize many results from the discrete ASF to the continuous space and prove novel results for a continuous measure of success. Additionally, we derive an upper bound for the expected performance of a search algorithm under arbitrary levels of quantization in the success measure, demonstrating a negative relationship between quantization and the performance upper bound. These results improve the fidelity of the ASF as a framework for modeling a range of machine learning and artificial intelligence tasks.more » « less
An official website of the United States government
