skip to main content

Search for: All records

Creators/Authors contains: "Checcucci, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2023
  2. Free, publicly-accessible full text available September 1, 2022
  3. A bstract The NA62 experiment reports the branching ratio measurement $$ \mathrm{BR}\left({K}^{+}\to {\pi}^{+}\nu \overline{\nu}\right)=\left({10.6}_{-3.4}^{+4.0}\left|{}_{\mathrm{stat}}\right.\pm {0.9}_{\mathrm{syst}}\right)\times {10}^{-11} $$ BR K + → π + ν ν ¯ = 10.6 − 3.4 + 4.0 stat ± 0.9 syst × 10 − 11 at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016–2018. This provides evidence for the very rare K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ decay, observed with a significance of 3.4 σ . The experimentmore »achieves a single event sensitivity of (0 . 839 ± 0 . 054) × 10 − 11 , corresponding to 10.0 events assuming the Standard Model branching ratio of (8 . 4 ± 1 . 0) × 10 − 11 . This measurement is also used to set limits on BR( K + → π + X ), where X is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample.« less
  4. A bstract A search for the K + → π + X decay, where X is a long-lived feebly interacting particle, is performed through an interpretation of the K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ analysis of data collected in 2017 by the NA62 experiment at CERN. Two ranges of X masses, 0–110 MeV /c 2 and 154–260 MeV /c 2 , and lifetimes above 100 ps are considered. The limits set on the branching ratio, BR( K + → π + X ), are competitive with previously reported searches in the first mass range,more »and improve on current limits in the second mass range by more than an order of magnitude.« less
  5. A bstract The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 10 9 tagged π 0 mesons from K + → π + π 0 ( γ ), searching for the decay of the π 0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4 . 4 × 10 − 9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit onmore »the branching ratio for the decay K + → π + X , where X is a particle escaping detection with mass in the range 0.110–0.155 GeV /c 2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.« less
  6. A bstract The NA62 experiment reports an investigation of the $$ {K}^{+}\to {\pi}^{+}\nu \overline{\nu} $$ K + → π + ν ν ¯ mode from a sample of K + decays collected in 2017 at the CERN SPS. The experiment has achieved a single event sensitivity of (0 . 389 ± 0 . 024) × 10 − 10 , corresponding to 2.2 events assuming the Standard Model branching ratio of (8 . 4 ± 1 . 0) × 10 − 11 . Two signal candidates are observed with an expected background of 1.5 events. Combined with the result of amore »similar analysis conducted by NA62 on a smaller data set recorded in 2016, the collaboration now reports an upper limit of 1 . 78 × 10 − 10 for the $$ {K}^{+}\to {\pi}^{+}\nu \overline{\nu} $$ K + → π + ν ν ¯ branching ratio at 90% CL. This, together with the corresponding 68% CL measurement of ( $$ {0.48}_{-0.48}^{+0.72} $$ 0.48 − 0.48 + 0.72 ) × 10 − 10 , are currently the most precise results worldwide, and are able to constrain some New Physics models that predict large enhancements still allowed by previous measurements.« less
  7. Abstract The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior to the start of the High Luminosity LHC period. One of the crucial components of the new Inner Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular its analogue front-end, which receives the signal from the sensor and digitizes it. Three different analogue front-ends (Synchronous, Linear, and Differential) were designed and implemented in the RD53A demonstrator chip. A dedicated evaluation program was carried out to select the most suitable design to build a radiation tolerant pixel detector able tomore »sustain high particle rates with high efficiency and a small fraction of spurious pixel hits. The test results showed that all three analogue front-ends presented strong points, but also limitations. The Differential front-end demonstrated very low noise, but the threshold tuning became problematic after irradiation. Moreover, a saturation in the preamplifier feedback loop affected the return of the signal to baseline and thus increased the dead time. The Synchronous front-end showed very good timing performance, but also higher noise. For the Linear front-end all of the parameters were within specification, although this design had the largest time walk. This limitation was addressed and mitigated in an improved design. The analysis of the advantages and disadvantages of the three front-ends in the context of the CMS Inner Tracker operation requirements led to the selection of the improved design Linear front-end for integration in the final CMS readout chip.« less
    Free, publicly-accessible full text available December 1, 2022
  8. Abstract During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m 2 of silicon sensors was to compare sensors of baseline thickness (about 300 μm) to thinned sensors (about 240 μm), which promised several benefits at high radiationmore »levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 10 15 n eq /cm 2 . The measurement results demonstrate that sensors with about 300 μm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker.« less
    Free, publicly-accessible full text available November 1, 2022