skip to main content


Search for: All records

Creators/Authors contains: "Checkelsky, Joseph G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Flat-band materials such as the kagome metals or moiré superlattices are of intense current interest. Flat bands can result from the electron motion on numerous (special) lattices and usually exhibit topological properties. Their reduced bandwidth proportionally enhances the effect of Coulomb interaction, even when the absolute magnitude of the latter is relatively small. Seemingly unrelated to these materials is the large family of strongly correlated electron systems, which include the heavy-fermion compounds, and cuprate and pnictide superconductors. In addition to itinerant electrons from large, strongly overlapping orbitals, they frequently contain electrons from more localized orbitals, which are subject to a large Coulomb interaction. The question then arises as to what commonality in the physical properties and microscopic physics, if any, exists between these two broad categories of materials. A rapidly increasing body of strikingly similar phenomena across the different platforms — from electronic localization–delocalization transitions to strange-metal behaviour and unconventional superconductivity — suggests that similar underlying principles could be at play. Indeed, it has recently been suggested that flat-band physics can be understood in terms of Kondo physics. Inversely, the concept of electronic topology from lattice symmetry, which is fundamental in flat-band systems, is enriching the field of strongly correlated electron systems, in which correlation-driven topological phases are increasingly being investigated. In this Perspective article, we elucidate this connection, survey the new opportunities for cross-fertilization across platforms and assess the prospect for new insights that may be gained into correlation physics and its intersection with electronic topology. 
    more » « less
    Free, publicly-accessible full text available February 20, 2025
  2. The propagation of spin waves in magnetically ordered systems has emerged as a potential means to shuttle quantum information over large distances. Conventionally, the arrival time of a spin wavepacket at a distance,d, is assumed to be determined by its group velocity,vg. Here, we report time-resolved optical measurements of wavepacket propagation in the Kagome ferromagnet Fe3Sn2that demonstrate the arrival of spin information at times significantly less thand/vg. We show that this spin wave “precursor” originates from the interaction of light with the unusual spectrum of magnetostatic modes in Fe3Sn2. Related effects may have far-reaching consequences toward realizing long-range, ultrafast spin wave transport in both ferromagnetic and antiferromagnetic systems.

     
    more » « less
  3. Free, publicly-accessible full text available November 9, 2024