skip to main content

Search for: All records

Creators/Authors contains: "Chekmenev, Eduard Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 23, 2024
  2. Hyperpolarization of 13 C-pyruvate via Signal Amplificaton By Reversibble Exchange (SABRE) is an important recent discovery because of both the relative simplicity of hyperpolarization and the central biological relevance of pyruvate as a biomolecular probe for in vitro or in vivo studies. Here, we analyze the [1,2- 13 C 2 ]pyruvate-SABRE spin system and its field dependence theoretically and experimentally. We provide first-principles analysis of the governing 4-spin dihydride- 13 C 2 Hamiltonian and numerical spin dynamics simulations of the 7-spin dihydride- 13 C 2 –CH 3 system. The analytical and the numerical results are compared to matching systematic experiments. With these methods we unravel the observed spin state mixing of singlet states and triplet states at microTesla fields and we also analyze the dynamics during transfer from micro-Tesla field to high field for detection to understand the resulting spectra from the [1,2- 13 C 2 ]pyruvate-SABRE system. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Free, publicly-accessible full text available September 1, 2024
  6. Free, publicly-accessible full text available May 24, 2024
  7. Efficient 13C hyperpolarization of ketoisocaproate is demonstrated in natural isotopic abundance and [1-13C]enriched forms via SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei). Parahydrogen, as the source of nuclear spin order, and ketoisocaproate undergo simultaneous chemical exchange with an Ir-IMes-based hexacoordinate complex in CD3OD. SABRE-SHEATH enables spontaneous polarization transfer from parahydrogen-derived hydrides to the 13C nucleus of transiently bound ketoisocaproate. 13C polarization values of up to 18% are achieved at the 1-13C site in 1 min in the liquid state at 30 mM substrate concentration. The efficient polarization build-up becomes possible due to favorable relaxation dynamics. Specifically, the exponential build-up time constant (14.3 ± 0.6 s) is substantially lower than the corresponding polarization decay time constant (22.8 ± 1.2 s) at the optimum polarization transfer field (0.4 microtesla) and temperature (10 °C). The experiments with natural abundance ketoisocaproate revealed polarization level on the 13C-2 site of less than 1%—i.e., one order of magnitude lower than that of the 1-13C site—which is only partially due to more-efficient relaxation dynamics in sub-microtesla fields. We rationalize the overall much lower 13C-2 polarization efficiency in part by less favorable catalyst-binding dynamics of the C-2 site. Pilot SABRE experiments at pH 4.0 (acidified sample) versus pH 6.1 (unaltered sodium [1-13C]ketoisocaproate) reveal substantial modulation of SABRE-SHEATH processes by pH, warranting future systematic pH titration studies of ketoisocaproate, as well as other structurally similar ketocarboxylate motifs including pyruvate and alpha-ketoglutarate, with the overarching goal of maximizing 13C polarization levels in these potent molecular probes. Finally, we also report on the pilot post-mortem use of HP [1-13C]ketoisocaproate in a euthanized mouse, demonstrating that SABRE-hyperpolarized 13C contrast agents hold promise for future metabolic studies. 
    more » « less