skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Albert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Olefin-rich hydrogen-bonded crosslinked organic frameworks (HCOFs) were crosslinkedviafree radical reactions and subsequently converted to a hydroxylated HCOF. 
    more » « less
  2. Abstract For centuries, fossils from the Maastrichtian type locality and adjacent quarries have provided key evidence of vertebrate diversity during the latest Cretaceous, yet until recently the Maastrichtian type area had revealed no important insights into the evolutionary history of birds, one of the world’s most conspicuous groups of extant tetrapods. With the benefit of high-resolution micro-CT scanning, two important avian fossils from the Maastrichtian type area have now been examined in detail, offering profound, complementary insights into the evolutionary history of birds. The holotype specimens of these new taxa,Janavis finalidensBenito, Kuo, Widrig, Jagt and Field, 2022, andAsteriornis maastrichtensisField, Benito, Chen, Jagt and Ksepka, 2020, were originally collected in the late 1990s, but were only investigated in detail more than twenty years later. Collectively,JanavisandAsteriornisprovide some of the best evidence worldwide regarding the factors that influenced stem bird extinction and crown bird survivorship through the Cretaceous-Palaeogene transition, as well as insights into the origins of key anatomical features of birds such as an extensively pneumatised postcranial skeleton, a kinetic palate, and a toothless beak.Asteriornisalso provides scarce evidence of a Cretaceous-aged divergence time calibration within the avian crown group, while together,JanavisandAsteriornisconstitute the only documented co-occurrence of crown birds and non-neornithine avialans. Here, we review key insights into avian evolutionary history provided by these discoveries from the Maastrichtian stratotype, document undescribed and newly discovered Maastrichtian fossils potentially attributable to Avialae and provide the first histological data for the holotype ofAsteriornis, illustrating its skeletal maturity at the time of its death. 
    more » « less
  3. Ichthyornishas long been recognized as a pivotally important fossil taxon for understanding the latest stages of the dinosaur–bird transition, but little significant new postcranial material has been brought to light since initial descriptions of partial skeletons in the 19thCentury. Here, we present new information on the postcranial morphology ofIchthyornisfrom 40 previously undescribed specimens, providing the most complete morphological assessment of the postcranial skeleton ofIchthyornisto date. The new material includes four partially complete skeletons and numerous well-preserved isolated elements, enabling new anatomical observations such as muscle attachments previously undescribed for Mesozoic euornitheans. Among the elements that were previously unknown or poorly represented forIchthyornis, the new specimens include an almost-complete axial series, a hypocleideum-bearing furcula, radial carpal bones, fibulae, a complete tarsometatarsus bearing a rudimentary hypotarsus, and one of the first-known nearly complete three-dimensional sterna from a Mesozoic avialan. Several pedal phalanges are preserved, revealing a remarkably enlarged pes presumably related to foot-propelled swimming. Although diagnosable asIchthyornis, the new specimens exhibit a substantial degree of morphological variation, some of which may relate to ontogenetic changes. Phylogenetic analyses incorporating our new data and employing alternative morphological datasets recoverIchthyornisstemward of Hesperornithes andIaceornis, in line with some recent hypotheses regarding the topology of the crownward-most portion of the avian stem group, and we establish phylogenetically-defined clade names for relevant avialan subclades to help facilitate consistent discourse in future work. The new information provided by these specimens improves our understanding of morphological evolution among the crownward-most non-neornithine avialans immediately preceding the origin of crown group birds. 
    more » « less
  4. Spatially distributed excitation and inhibition collectively shape a visual neuron’s receptive field (RF) properties. In the direction-selective circuit of the mammalian retina, the role of strong null-direction inhibition of On-Off direction-selective ganglion cells (On-Off DSGCs) on their direction selectivity is well-studied. However, how excitatory inputs influence the On-Off DSGC’s visual response is underexplored. Here, we report that On-Off DSGCs have a spatially displaced glutamatergic receptive field along their horizontal preferred-null motion axes. This displaced receptive field contributes to DSGC null-direction spiking during interrupted motion trajectories. Theoretical analyses indicate that population responses during interrupted motion may help populations of On-Off DSGCs signal the spatial location of moving objects in complex, naturalistic visual environments. Our study highlights that the direction-selective circuit exploits separate sets of mechanisms under different stimulus conditions, and these mechanisms may help encode multiple visual features. 
    more » « less
  5. Abstract Boron trifluoride (BF3) is a highly corrosive gas widely used in industry. Confining BF3in porous materials ensures safe and convenient handling and prevents its degradation. Hence, it is highly desired to develop porous materials with high adsorption capacity, high stability, and resistance to BF3corrosion. Herein, we designed and synthesized a Lewis basic single‐crystalline hydrogen‐bond crosslinked organic framework (HCOF‐50) for BF3storage and its application in catalysis. Specifically, we introduced self‐complementaryortho‐alkoxy‐benzamide hydrogen‐bonding moieties to direct the formation of highly organized hydrogen‐bonded networks, which were subsequently photo‐crosslinked to generate HCOFs. The HCOF‐50 features Lewis basic thioether linkages and electron‐rich pore surfaces for BF3uptake. As a result, HCOF‐50 shows a record‐high 14.2 mmol/g BF3uptake capacity. The BF3uptake in HCOF‐50 is reversible, leading to the slow release of BF3. We leveraged this property to reduce the undesirable chain transfer and termination in the cationic polymerization of vinyl ethers. Polymers with higher molecular weights and lower polydispersity were generated compared to those synthesized using BF3 ⋅ Et2O. The elucidation of the structure–property relationship, as provided by the single‐crystal X‐ray structures, combined with the high BF3uptake capacity and controlled sorption, highlights the molecular understanding of framework‐guest interactions in addressing contemporary challenges. 
    more » « less
  6. Abstract The development of large pore single‐crystalline covalently linked organic frameworks is critical in revealing the detailed structure‐property relationship with substrates. One emergent approach is to photo‐crosslink hydrogen‐bonded molecular crystals. Introducing complementary hydrogen‐bonded carboxylic acid building blocks is promising to construct large pore networks, but these molecules often form interpenetrated networks or non‐porous solids. Herein, we introduced heteromeric carboxylic acid dimers to construct a non‐interpenetrated molecular crystal. Crosslinking this crystal precursor with dithiols afforded a large pore single‐crystalline hydrogen‐bonded crosslinked organic framework HCOF‐101. X‐ray diffraction analysis revealed HCOF‐101 as an interlayer connected hexagonal network, which possesses flexible linkages and large porous channels to host a hydrazone photoswitch. Multicycle Z/E‐isomerization of the hydrazone took place reversibly within HCOF‐101, showcasing the potential use of HCOF‐101 for optical information storage. 
    more » « less