skip to main content

Search for: All records

Creators/Authors contains: "Chen, Bo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 7, 2024
  2. Free, publicly-accessible full text available May 4, 2024
  3. Li, Fengjun ; Liang, Kaitai ; Lin, Zhiqiang ; Katsikas, Sokratis K. (Ed.)
    Mobile computing devices have been used to store and process sensitive or even mission critical data. To protect sensitive data in mobile devices, encryption is usually incorporated into major mobile operating systems. However, traditional encryption can not defend against coercive attacks in which victims are forced to disclose the key used to decrypt the sensitive data. To combat the coercive attackers, plausibly deniable encryption (PDE) has been introduced which can allow the victims to deny the existence of the sensitive data. However, the existing PDE systems designed for mobile devices are either insecure (i.e., suffering from deniability compromises) or impractical (i.e., unable to be compatible with the storage architecture of mainstream mobile devices, not lightweight, or not user-oriented). In this work, we design CrossPDE, the first cross-layer mobile PDE system which is secure, being compatible with the storage architecture of mainstream mobile devices, lightweight as well as user-oriented. Our key idea is to intercept major layers of a mobile storage system, including the file system layer (preventing loss of hidden sensitive data and enabling users to use the hidden mode), the block layer (taking care of expensive encryption and decryption), and the flash translation layer (eliminating traces caused by themore »hidden sensitive data). Experimental evaluation on our real-world prototype shows that CrossPDE can ensure deniability with a modest decrease in throughput.« less
    Free, publicly-accessible full text available February 4, 2024
  4. Ransomware is increasingly prevalent in recent years. To defend against ransomware in computing devices using flash memory as external storage, existing designs extract the entire raw flash memory data to restore the external storage to a good state. However, they cannot allow a fine-grained recovery in terms of user files as raw flash memory data do not have the semantics of "files". In this work, we design FFRecovery, a new ransomware defense strategy that can support fine-grained data recovery after the attacks. Our key idea is, to recover a file corrupted by the ransomware, we can 1) restore its file system metadata via file system forensics, and 2) extract its file data via raw data extraction from the flash translation layer, and 3) assemble the corresponding file system metadata and the file data. A simple prototype of FFRecovery has been developed and some preliminary results are provided.
    Free, publicly-accessible full text available November 7, 2023
  5. Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with “successfully” regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blindingmore »diseases.« less
    Free, publicly-accessible full text available February 1, 2024
  6. Lin, Jingqiang ; Tang, Qiang (Ed.)
    Nowadays, mobile devices have been used broadly to store and process sensitive data. To ensure confidentiality of the sensitive data, Full Disk Encryption (FDE) is often integrated in mainstream mobile operating systems like Android and iOS. FDE however cannot defend against coercive attacks in which the adversary can force the device owner to disclose the decryption key. To combat the coercive attacks, Plausibly Deniable Encryption (PDE) is leveraged to plausibly deny the very existence of sensitive data. However, most of the existing PDE systems for mobile devices are deployed at the block layer and suffer from deniability compromises. Having observed that none of existing works in the literature have experimentally demonstrated the aforementioned compromises, our work bridges this gap by experimentally confirming the deniability compromises of the block-layer mobile PDE systems. We have built a mobile device testbed, which consists of a host computing device and a flash storage device. Additionally, we have deployed both the hidden volume-based PDE and the steganographic file system-based PDE at the block layer of our testbed and performed disk forensics to assess potential compromises on the raw NAND flash. Our experimental results confirm it is indeed possible for the adversary to compromise the block-layermore »PDE systems when the adversary can have access to the raw NAND flash in real world. We also discuss practical issues when performing such attacks in practice.« less
    Free, publicly-accessible full text available October 6, 2023
  7. Free, publicly-accessible full text available October 1, 2023
  8. Free, publicly-accessible full text available October 25, 2023
  9. Reduced open-voltage deficit and enhanced light absorption enable bifacial tandem device with equivalent efficiency of 29.3%
    Free, publicly-accessible full text available November 25, 2023