skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, G M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the first measurement of cosmic-ray fluxes of Li 6 and Li 7 isotopes in the rigidity range from 1.9 to 25 GV. The measurements are based on 9.7 × 10 5 Li 6 and 1.04 × 10 6 Li 7 nuclei collected by the Alpha Magnetic Spectrometer on the International Space Station from May 2011 to October 2023. We observe that over the entire rigidity range the Li 6 and Li 7 fluxes exhibit nearly identical time variations and, above 4 GV , the time variations of Li 6 , Li 7 , He, Be, B, C, N, and O fluxes are identical. Above 7 GV , we find an identical rigidity dependence of the Li 6 and Li 7 fluxes. This shows that they are both produced by collisions of heavier cosmic-ray nuclei with the interstellar medium and, in particular, excludes the existence of a sizable primary component in the Li 7 flux. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. We report the properties of precision time structures of cosmic nuclei He, Li, Be, B, C, N, and O fluxes over an 11-year solar cycle from May 2011 to November 2022 in the rigidity range from 1.92 to 60.3 GV. The nuclei fluxes show similar but not identical time variations with amplitudes decreasing with increasing rigidity. In particular, below 3.64 GV the Li, Be, and B fluxes, and below 2.15 GV the C, N, and O fluxes, are significantly less affected by solar modulation than the He flux. We observe that these differences in solar modulation are linearly correlated with the differences in the spectral indices of the cosmic nuclei fluxes. This shows, in a model-independent way, that solar modulation of galactic cosmic nuclei depends on their spectral shape. In addition, solar modulation differences due to nuclei velocity dependence on the mass-to-charge ratio ( A / Z ) are not observed. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. A<sc>bstract</sc> A search for beyond-the-standard-model neutral Higgs bosons decaying to a pair of bottom quarks, and produced in association with at least one additional bottom quark, is performed with the CMS detector. The data were recorded in proton-proton collisions at a centre-of-mass energy of 13 TeV at the CERN LHC and correspond to an integrated luminosity of 36.7–126.9 fb−1, depending on the probed mass range. No signal above the standard model background expectation is observed. Upper limits on the production cross section times branching fraction are set for Higgs bosons in the mass range of 125–1800 GeV. The results are interpreted in benchmark scenarios of the minimal supersymmetric standard model, as well as suitable classes of two-Higgs-doublet models. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. A<sc>bstract</sc> The measurements of the Higgs boson (H) production cross sections performed by the CMS Collaboration in the four-lepton (4ℓ, ℓ= e,μ) final state at a center-of-mass energy$$\sqrt{s}$$= 13.6 TeV are presented. These measurements are based on data collected with the CMS detector at the CERN LHC in 2022, corresponding to an integrated luminosity of 34.7 fb−1. Cross sections are measured in a fiducial region closely matching the experimental acceptance, both inclusively and differentially, as a function of the transverse momentum and the absolute value of the rapidity of the four-lepton system. The H → ZZ → 4ℓinclusive fiducial cross section is measured to be$${2.89}_{-0.49}^{+0.53}{\left({\text{stat}}\right)}_{-0.21}^{+0.29}\left({\text{syst}}\right)$$fb, in agreement with the standard model expectation of$${3.09}_{-0.24}^{+0.27}$$fb. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  5. A measurement of the Higgs boson mass and width via its decay to two Z bosons is presented. Proton-proton collision data collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb 1 at a center-of-mass energy of 13 TeV, is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, 125.04 ± 0.12 GeV , and an upper limit on the width Γ H < 330 MeV at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of 3.0 1.5 + 2.0 MeV , in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  6. A<sc>bstract</sc> A search for heavy, long-lived, charged particles with large ionization energy loss within the silicon tracker of the CMS experiment is presented. A data set of proton-proton collisions at a center of mass energy at$$ \sqrt{s} $$ s = 13 TeV, collected in 2017 and 2018 at the CERN LHC, corresponding to an integrated luminosity of 101 fb−1, is used in this analysis. Two different approaches for the search are taken. A new method exploits the independence of the silicon pixel and strips measurements, while the second method improves on previous techniques using ionization to determine a mass selection. No significant excess of events above the background expectation is observed. The results are interpreted in the context of the pair production of supersymmetric particles, namely gluinos, top squarks, and tau sleptons, and of the Drell-Yan pair production of fourth generation (τ′) leptons with an electric charge equal to or twice the absolute value of the electron charge (e). An interpretation of a Z’ boson decaying to twoτ′ leptons with an electric charge equal to 2eis presented for the first time. The 95% confidence upper limits on the production cross section are extracted for each of these hypothetical particles. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  7. Free, publicly-accessible full text available April 1, 2026
  8. Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of the deuteron ( D ) flux are presented. The measurements are based on 21 × 10 6 D nuclei in the rigidity range from 1.9 to 21 GV collected from May 2011 to April 2021. We observe that over the entire rigidity range the D flux exhibits nearly identical time variations with the p , He 3 , and He 4 fluxes. Above 4.5 GV, the D / He 4 flux ratio is time independent and its rigidity dependence is well described by a single power law R Δ with Δ D / He 4 = 0.108 ± 0.005 . This is in contrast with the He 3 / He 4 flux ratio for which we find Δ He 3 / He 4 = 0.289 ± 0.003 . Above 13 GV we find a nearly identical rigidity dependence of the D and p fluxes with a D / p flux ratio of 0.027 ± 0.001 . These unexpected observations indicate that cosmic deuterons have a sizable primarylike component. With a method independent of cosmic ray propagation, we obtain the primary component of the D flux equal to 9.4 ± 0.5 % of the He 4 flux and the secondary component of the D flux equal to 58 ± 5 % of the He 3 flux. Published by the American Physical Society2024 
    more » « less
  9. Nuclear medium effects on B + meson production are studied using the binary-collision scaled cross section ratio between events of different charged-particle multiplicities from proton-lead collisions. Data, collected by the CMS experiment in 2016 at a nucleon-nucleon center-of-mass energy of s NN = 8.16 TeV , corresponding to an integrated luminosity of 175 nb 1 , were used. The scaling factors in the ratio are determined using a novel approach based on the Z μ μ + cross sections measured in the same events. The scaled ratio for B + is consistent with unity for all event multiplicities, putting stringent constraints on nuclear modification for heavy flavor. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  10. A<sc>bstract</sc> The production cross sections of$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 and B+mesons are reported in proton-proton (pp) collisions recorded by the CMS experiment at the CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds to an integrated luminosity of 302 pb−1. The cross sections are based on measurements of the$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 →J/ψ(μ+μ)ϕ(1020)(K+K) and B+→J/ψ(μ+μ)K+decay channels. Results are presented in the transverse momentum (pT) range 7–50 GeV/cand the rapidity interval |y|<2.4 for the B mesons. The measuredpT-differential cross sections of B+and$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 in pp collisions are well described by fixed-order plus next-to-leading logarithm perturbative quantum chromodynamics calculations. Using previous PbPb collision measurements at the same nucleon-nucleon center-of-mass energy, the nuclear modification factors,RAA, of the B mesons are determined. ForpT>10 GeV/c, both mesons are found to be suppressed in PbPb collisions (withRAAvalues significantly below unity), with less suppression observed for the$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 mesons. In thispTrange, theRAAvalues for the B+mesons are consistent with those for inclusive charged hadrons and D0mesons. Below 10 GeV/c, both B+and$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 are found to be less suppressed than either inclusive charged hadrons or D0mesons, with the$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 RAAvalue consistent with unity. TheRAAvalues found for the B+and$$ {\textrm{B}}_{\textrm{s}}^0 $$ B s 0 are compared to theoretical calculations, providing constraints on the mechanism of bottom quark energy loss and hadronization in the quark-gluon plasma, the hot and dense matter created in ultrarelativistic heavy ion collisions. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026