skip to main content

Search for: All records

Creators/Authors contains: "Chen, H.-Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Semiconductors with O(meV) band gaps have been shown to be promising targets to search for sub-MeV mass dark matter (DM). In this paper we focus on a class of materials where such narrow band gaps arise naturally as a consequence of spin-orbit coupling (SOC). Specifically, we are interested in computing DM-electron scattering and absorption rates in these materials using state- of-the-art density functional theory (DFT) techniques. To do this, we extend the DM interaction rate calculation to include SOC effects which necessitates a generalization to spin-dependent wave functions. We apply our new formalism to calculate limits for several DM benchmark models using an example ZrTe5 target and show that the inclusion of SOC can substantially alter projected constraints.
    Free, publicly-accessible full text available February 1, 2023
  2. Abstract On 2019 August 14 at 21:10:39 UTC, the LIGO/Virgo Collaboration (LVC) detected a possible neutron star–black hole merger (NSBH), the first ever identified. An extensive search for an optical counterpart of this event, designated GW190814, was undertaken using the Dark Energy Camera on the 4 m Victor M. Blanco Telescope at the Cerro Tololo Inter-American Observatory. Target of Opportunity interrupts were issued on eight separate nights to observe 11 candidates using the 4.1 m Southern Astrophysical Research (SOAR) telescope’s Goodman High Throughput Spectrograph in order to assess whether any of these transients was likely to be an optical counterpart of the possible NSBH merger. Here, we describe the process of observing with SOAR, the analysis of our spectra, our spectroscopic typing methodology, and our resultant conclusion that none of the candidates corresponded to the gravitational wave merger event but were all instead other transients. Finally, we describe the lessons learned from this effort. Application of these lessons will be critical for a successful community spectroscopic follow-up program for LVC observing run 4 (O4) and beyond.
    Free, publicly-accessible full text available April 1, 2023
  3. Free, publicly-accessible full text available August 1, 2023
  4. Free, publicly-accessible full text available August 1, 2023
  5. Free, publicly-accessible full text available June 1, 2023