skip to main content

Search for: All records

Creators/Authors contains: "Chen, Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Real-time systems power safety-critical applications that require strong isolation among each other. Such isolation needs to be enforced at two orthogonal levels. On the micro-architectural level, this mainly involves avoiding interference through micro-architectural states, such as cache lines. On the algorithmic level, this is usually achieved by adopting real-time partitions to reserve resources for each application. Implementations of such systems are often complex and require formal verification to guarantee proper isolation. In this paper, we focus on algorithmic isolation, which is mainly related to scheduling-induced interferences. We address earliest-deadline-first (EDF) partitions to achieve compositionality and utilization, while imposing constraints on tasks' periods and enforcing budgets on these periodic partitions to ensure isolation between each other. The formal verification of such a real-time OS kernel is challenging due to the inherent complexity of the dynamic priority assignment on the partition level. We tackle this problem by adopting a dynamically constructed abstraction to lift the reasoning of a concrete scheduler into an abstract domain. Using this framework, we verify a real-time operating system kernel with budget-enforcing EDF partitions and prove that it indeed ensures isolation between partitions. All the proofs are mechanized in Coq.
    Free, publicly-accessible full text available October 31, 2023
  2. This paper reports our recent practice of recommending articles to cold-start users at Tencent. Transferring knowledge from information-rich domains to help user modeling is an effective way to address the user-side cold-start problem. Our previous work demonstrated that general-purpose user embeddings based on mobile app usage helped article recommendations. However, high-dimensional embeddings are cumbersome for online usage, thus limiting the adoption. On the other hand, user clustering, which partitions users into several groups, can provide a lightweight, online-friendly, and explainable way to help recommendations. Effective user clustering for article recommendations based on mobile app usage faces unique challenges, including (1) the gap between an active user’s behavior of mobile app usage and article reading, and (2) the gap between mobile app usage patterns of active and cold-start users. To address the challenges, we propose a tailored Dual Alignment User Clustering (DAUC) model, which applies a sample-wise contrastive alignment to liminate the gap between active users’ mobile app usage and article reading behavior, and a distribution-wise adversarial alignment to eliminate the gap between active users’ and cold-start users’ app usage behavior. With DAUC, cold-start recommendation-optimized user clustering based on mobile app usage can be achieved. On top of the user clusters,more »we further build candidate generation strategies, real-time features, and corresponding ranking models without much engineering difficulty. Both online and offline experiments demonstrate the effectiveness of our work.« less
    Free, publicly-accessible full text available August 15, 2023
  3. Free, publicly-accessible full text available June 8, 2023
  4. Free, publicly-accessible full text available July 1, 2023
  5. Free, publicly-accessible full text available May 5, 2023
  6. Free, publicly-accessible full text available April 29, 2023