skip to main content

Search for: All records

Creators/Authors contains: "Chen, Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    Kernel two-sample tests have been widely used for multivariate data to test equality of distributions. However, existing tests based on mapping distributions into a reproducing kernel Hilbert space mainly target specific alternatives and do not work well for some scenarios when the dimension of the data is moderate to high due to the curse of dimensionality. We propose a new test statistic that makes use of a common pattern under moderate and high dimensions and achieves substantial power improvements over existing kernel two-sample tests for a wide range of alternatives. We also propose alternative testing procedures that maintain high power with low computational cost, offering easy off-the-shelf tools for large datasets. The new approaches are compared to other state-of-the-art tests under various settings and show good performance. We showcase the new approaches through two applications: the comparison of musks and nonmusks using the shape of molecules, and the comparison of taxi trips starting from John F. Kennedy airport in consecutive months. All proposed methods are implemented in an R package kerTests.

    more » « less
  2. Free, publicly-accessible full text available November 27, 2024
  3. Free, publicly-accessible full text available September 27, 2024
  4. Free, publicly-accessible full text available July 4, 2024
  5. Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available June 1, 2024
  7. Free, publicly-accessible full text available May 1, 2024
  8. Free, publicly-accessible full text available May 1, 2024
  9. Recent technological advances allow for the collection of massive data in the study of complex phenomena over time and/or space in various fields. Many of these data involve sequences of high-dimensional or non-Euclidean measurements, where change-point analysis is a crucial early step in understanding the data. Segmentation, or offline change-point analysis, divides data into homogeneous temporal or spatial segments, making subsequent analysis easier; its online counterpart detects changes in sequentially observed data, allowing for real-time anomaly detection. This article reviews a nonparametric change-point analysis framework that utilizes graphs representing the similarity between observations. This framework can be applied to data as long as a reasonable dissimilarity distance among the observations can be defined. Thus, this framework can be applied to a wide range of applications, from high-dimensional data to non-Euclidean data, such as imaging data or network data. In addition, analytic formulas can be derived to control the false discoveries, making them easy off-the-shelf data analysis tools. 
    more » « less
    Free, publicly-accessible full text available March 10, 2024
  10. Abstract

    Noble metals supported on reducible oxides, like CoOxand TiOx, exhibit superior activity in many chemical reactions, but the origin of the increased activity is not well understood. To answer this question we studied thin films of CoOxsupported on an Au(111) single crystal surface as a model for the CO oxidation reaction. We show that three reaction regimes exist in response to chemical and topographic restructuring of the CoOxcatalyst as a function of reactant gas phase CO/O2stoichiometry and temperature. Under oxygen-lean conditions and moderate temperatures (≤150 °C), partially oxidized films (CoOx<1) containing Co0were found to be efficient catalysts. In contrast, stoichiometric CoO films containing only Co2+form carbonates in the presence of CO that poison the reaction below 300 °C. Under oxygen-rich conditions a more oxidized catalyst phase (CoOx>1) forms containing Co3+species that are effective in a wide temperature range. Resonant photoemission spectroscopy (ResPES) revealed the unique role of Co3+sites in catalyzing the CO oxidation. Density function theory (DFT) calculations provided deeper insights into the pathway and free energy barriers for the reactions on these oxide phases. These findings in this work highlight the versatility of catalysts and their evolution to form different active phases, both topological and chemically, in response to reaction conditions exposing a new paradigm in the catalyst structure during operation.

    more » « less