skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Jiaxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce a program named KPROJ that unfolds the electronic and phononic band structure of materials modeled by supercells. The program is based on the k-projection method, which projects the wavefunction of the supercell onto the 𝑘-points in the Brillouin zone of the artificial primitive cell. It allows for obtaining an effective “local'' band structure by performing partial integration over the k-projected wavefunctions, e.g., the unfolded band structure with layer-projection for interfaces and the weighted band structure in the vacuum for slabs. The layer k-projection is accelerated by a scheme that combines the Fast Fourier Transform (FFT) and the inverse FFT algorithms. It is now interfaced with several first-principles codes based on plane waves such as VASP, Quantum Espresso, and ABINIT. In addition, it also has interfaces with ABACUS, a first-principles simulation package based on numerical atomic basis sets, and PHONOPY, a program for phonon calculations. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026